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Chapter 1 

1. Introduction to Structural Dynamics 
 

The basic goal of structural dynamics is to determine the structural response against a dynamic loading 

(excitation). The term response is used in a general sense to include any response quantity, such as 

displacement, velocity, or acceleration of the mass; also, an internal force or internal stress in the 

structure. 

 
Figure 1-1: The fundamental objective of structural dynamics 

 

1.1. Classification of Dynamic Loading 

The term “dynamic” may be defined simply as time-varying; thus a dynamic load is any load of which its 

magnitude, direction, and/or position varies with time. Similarly, the structural response to a dynamic load, 

i.e., the resulting stresses and deflections, is also time-varying, or dynamic.  

Two basically different approaches are available for evaluating structural response to dynamic loads: 

“deterministic” and “nondeterministic”. The choice of method to be used in any given case depends upon 

how the loading is defined. If the time variation of loading is fully known, even though it may be highly 

oscillatory or irregular in character, it will be referred to herein as a “prescribed dynamic loading”; and the 

analysis of the response of any specified structural system to a prescribed dynamic loading is defined as 

a “deterministic analysis”. On the other hand, if the time variation is not completely known but can be 

defined in a statistical sense, the loading is termed a “random dynamic loading”; and its corresponding 

analysis of response is defined as a “nondeterministic or probabilistic analysis”. 

In general, structural response to any dynamic loading is expressed basically in terms of the 

displacements of the structure. Thus, a deterministic analysis leads directly to displacement time-histories 

corresponding to the prescribed loading history; other related response quantities, such as stresses, 

strains, internal forces, etc., are usually obtained as a secondary phase of the analysis. On the other 

hand, a nondeterministic analysis provides only statistical information about the displacements resulting 

from the statistically defined loading; corresponding information on the related response quantities are 

then generated using independent nondeterministic analysis procedures (Clough and Penzien (2003) 

Dynamics of Structures, 3rd Edition). 
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Figure 1-2: The deterministic vs. probabilistic load 

 

 
Figure 1-3: The periodic vs. non-periodic load 
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Figure 1-4: Characteristics and sources of typical dynamic loadings: (a) simple harmonic; (b) complex; 

(c) impulsive; (d) long-duration. (Clough and Penzien (2003) Dynamics of Structures, 3rd Edition). 

 

1.2. The Fundamental Relationships in Static Structural 

Analysis 

There are six basic concepts that lie at the foundation of theories governing the behavior of structures, 

from analysis to design. 

 Loads and Load Effects 

 Actions 

 Deformations 

 Strains 

 Stresses 

 Stress-Resultants 

Loads are the actual physical excitations that may act on the structure e.g. gravity, wind pressure, 

dynamic inertial effects and retention of liquid., Loads and its effects can lead to actions, (which are 
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basically the idealized forces acting on the members) e.g. bending moment, shear force etc. Actions can 

lead to deformations, which again are idealized into various components such as rotation, shortening, and 

shearing angle Deformations cause strains which are basically normalized deformation at the cross-

section material or fiber level. Strains may lead to stresses in material fibers, which generally have a 

correspondence with the strain through material stress-strain model. The stresses can be summed up in 

any particular manner to determine the internal stress resultants. 

In general, for a structure to be in static or dynamic equilibrium, the internal stress resultants should be in 

equilibrium with the actions due to loads. An alternative way of looking at the same linkage is that the 

actions cause stresses in the member cross-sections. These stresses cause strains, which can be 

summed-up to determine deformations. So the relationships between actions, deformations, strains, and 

stresses can be used in many ways to solve the particular problems at hand. Figure 1-5 illustrates this 

whole process starting from loads and ending on stress resultants.  

 

Figure 1-5: The basic relationships in structural analysis and design 
 

A brief description of the relationship between these quantities is given here, without the explicit 

mathematical formulations that are adequately covered in many texts on structural theory and analysis. 

a) Action-Deformation Relationship: Defining an action-deformation relationship means linking 

the deformations produced in a member due to applied actions or linking the restraining actions 

with applied deformations. These relationships involve the entire stiffness of the member and may 

be either linear or nonlinear. One action can produce more than one deformation and one 

deformation may be caused by more than one action.  

 
b) Deformation-Strain Relationship: Deformation-Strain relationship means linking deformations 

with corresponding strains. Each deformation produces a particular strain pattern or profile on the 

cross-section. A particular strain may be result of several deformations. For example, axial strain 

may be produced due to axial deformation as well as flexural curvature. This relationship is 

defined primarily by the cross-section’s stiffness and may be linear or nonlinear. 

 

c) Stress-Strain Relationship: Stress-Strain relationship means linking strain to corresponding 

stress. Generally, this relationship is used at material level, indicating material stiffness and its 
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behavior. For example, Hooke’s Law describes the stress-strain relationship for a linear elastic 

material but in general, this relationship is nonlinear for most materials. 

 

d) Stress Resultant-Action Relationship: This last relationship is the expression of equilibrium 

and completes the cycle of all relationships. In fact, this relationship is the basis for strength 

design of structural members, which states that “the internal stress resultants should be in 

equilibrium with external actions with adequate margin for safety”.  

 

1.2.1. The Concept of Stiffness 

Let us consider a structure subjected to an arbitrary force (𝐹). This force will produce an arbitrary 

deformation 𝑢. If we compare the structure to a simple elastic spring (Figure 1-6), a simple linear 

relationship between the force and deformation exists. This linear dependence is the “stiffness” which is 

the resistance to its deformation.  

 

Figure 1-6: The conceptual state of equilibrium and role of stiffness 

 

In a real structure, this resistance or stiffness comes from four sources, as shown in Figure 1-7: 

a) Global Structure Stiffness: It is the overall resistance of the structures to overall loads and is 

derived from the sum of stiffness of its members, their connectivity and the boundary or the 

restraining conditions. 

b) Member Stiffness: It is the resistance of each member to local actions and is derived from the 

cross-section stiffness and the geometry of the member. 

c) Cross-section Stiffness: It is the resistance of the cross-section to overall strains and is derived 

from the cross-section geometry and the stiffness of the materials from which it is made. 

d) Material Stiffness: It is the resistance of the material to strain and is derived from the stiffness of 

the material particles. 

For linear elastic discrete models, the stiffness is a constant, represented by the slope of linear 

relationship between an “action” and the corresponding “deformation”. Table 1 shows the examples of 

action-deformation relationships at all four levels. 
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Table 1: Action-deformation relationships 

Sr. No. Level 
Example of an action-deformation 

relationship 

Stiffness relating the action with 

corresponding deformation 

1 Material Level Stress-strain relationship Elastic Modulus (𝐸) 

2 
Cross-section 

Level 
Moment-curvature relationship Flexural Stiffness (𝐸𝐼) 

3 Member Level Moment-rotation relationship  Member Flexural Stiffness (𝐸𝐼/𝐿) 

4 Structural Level 
Total base reaction force-roof 

displacement 

Structural Global Stiffness Matrix 

(𝑲) 

 

 

Figure 1-7: The overall stiffness of the structure is derived from the geometry and connectivity of 

the members and their stiffness. The member stiffness is derived from the cross-section stiffness, 

and member geometry. The cross-section stiffness is derived from the material stiffness and the 

cross-section geometry. 

 

The simplest form of Hook’s law (𝐹 =  𝐾𝑢) can be generalized to include several deformations, several 

actions and several stiffness relationships and represented in a matrix form. It then becomes the basis of 

the “Stiffness Matrix Method” of structural analysis and more generally, the “Finite Element Method”.  

 

1.2.2. The Nonlinearity of Response and Stiffness 

The equilibrium equation, 𝐹 =  𝐾𝑢 is based on the assumption that the relationship between the force 

and deformation is linear and infinite. That means, a very large force can produce a corresponding very 

large displacement and an infinite force can produce an infinite displacement. The equation also suggests 

that if the force is decreased, the deformation will reduce and zero force will return the structure to the 

original un-deformed state, and that a negative force will produce exactly same negative displacement as 
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in positive direction. However, in reality, almost none of these assumptions or behaviors are true. The 

relationship between force and displacement for a real structure can be highly nonlinear and inelastic with 

no single value of stiffness describing its behavior (Figure 1-8). In such cases, the stiffness varies at 

different states of deformation throughout the loading history. The complete equilibrium condition and 

corresponding equation should reflect not only the nonlinear and inelastic behavior, but also the effect of 

force being applied fast enough to produce deformation with velocity and acceleration so that the total 

equilibrium should include effect of inertia and damping. 

 

Figure 1-8: A typical relationship between force and deformation. This may also hold for 

relationship between stress and strain 

 
Figure 1-9 shows all possible states of equilibrium for a structure whereas Figure 1-10 shows the 

nonlinearity inherent in various stages of stiffness contribution. 

 

 

Figure 1-9: The equilibrium conditions for a typical structural system 
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Figure 1-10: The nonlinear nature of stiffness and the role of nonlinear cross-sectional response 

 

1.3. The Concept of Degree of Freedom (DOF) 

Although it is possible to conceive situations where deformation can occur without external actions (such 

as thermal variation) generally, an external action (a generalized force, moment, or torque) is needed to 

produce deformation in a structural member. If the actions can be generalized in terms of their 

components, we can say that in general, those actions components produce corresponding deformation 

components. If we assume that the materials are behaving linearly and elastically, we can end up with a 

simple spring representation for each deformation component. That is, the action (𝐹) and deformation (𝑢) 

in a particular sense are proportional and related to each other by the corresponding stiffness. 

Consider, for example, the cross-section of a beam member (broadly defined as a structural component 

having one dimension significantly larger than the other two) shown in Figure 1-11. The longer dimension 

becomes the member axis, and the dimensions in the plane perpendicular to the longitudinal axis define 

the cross-section. The cross-section exposes the materials used in the member.  

For a member placed in a general three-dimensional space, each point in a member can move in an 

infinite number of ways. However, if the cross-section is assumed to be rigid in its own plane, all these 

movements can be completely defined in terms of seven idealized directions, referred to as the degrees 

of freedom (DOF) at each section on the centerline of the member, with respect to three orthogonal axes. 

Using the right hand rule, if we orient the axis system as shown in the Figure 1-11, these degrees of 

freedom become: 

 Movement along the member axis, uz 

 Movement along the x- axis, ux 

 Movement along the y-axis, uy 

 Rotation about the longitudinal axis, rz 

 Rotation about the x-axis, rx 

 Rotation about the y-axis, ry 

 Out-of-plane movement (distortion) of the cross-section’s points along the longitudinal axis, wz 
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Figure 1-11: Degrees of freedom. Each Section on a beam member can have seven Degrees of 

Freedom (DOF) with respect to its local axis 

 
In short, the  number  of independent  coordinates  necessary  to specify  the configuration or position of 

a system at any  time  is  referred  to  as  the  number  of degrees  of freedom.  In general, a continuous 

structure has an infinite number of degrees of freedom. Nevertheless, the process of idealization or 

selection of an appropriate mathematical model permits the reduction in the number of degrees of 

freedom to a discrete number and in some cases to just a single degree of freedom.  

It is important to note that in the above definitions, the cross-section is assumed to be rigid in its own 

plane. That means the dimensions and shape of the cross-section before and after deformation remain 

the same. This assumption is mostly true for solid sections. For thin walled sections and for large box 

girders, the section may distort in its own plane and some additional considerations may be needed to 

evaluate its behavior. It is also generally assumed that the member centerline passes through the 

geometric (or the plastic) centroid of the cross-section. This assumption is generally true for members 

having length more than at least five times the average size of the cross-section.  

1.3.1. Degrees of Freedom, Deformations, Strains and Stresses 

Each degree of freedom at the cross-section centroid is associated with a corresponding deformation in 

the member. Each deformation in the member produces a corresponding strain profile in the cross-

section. Each strain profile generally produces a corresponding stress profile in the cross-section 

material(s). These relationships are shown below. 

uz → Axial deformation → Axial strain → Axial stress 

ux → Shear deformation → Shear strain → Shear stress 

uy → Shear deformation → Shear strain → Shear stress 

rz → Torsion → Shear strain → Shear stress (may also produce axial stresses and strains) 

ry → Curvature → Axial strain → Axial stress (may also produce shear strains) 
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rx → Curvature → Axial strain → Axial stress (may also produce shear stresses and strains) 

wz → Warping → Axial strain → Axial stress (may also produce shear strains) 

 

Sometimes one DOF may be related to more than one stress and strain component. In some cases, 

strain may not produce any stress, such as the unrestrained thermal expansion or free shrinkage 

produces elongation and corresponding strains, but does not result in any stresses in the cross-section’s 

material. 

“Each deformation may produce more than one strain and stress component and each stress component 

may be produced by more than one deformation.” 

1.3.2. Internal Stress Resultants and Degrees of Freedom 

Material stresses in the cross-section (or stress components along the reference axes) can be summed 

up to obtain the total resultants. These stress resultants (as shown in Figure 1-12), when determined with 

respect to the member axes and the corresponding degrees of freedom at the cross-section centroid can 

provide useful information related to the “capacity” of the cross-section. 

 

Figure 1-12: Stress resultants and degrees of freedom 

 

1.4. Different Forms of Linear Stiffness Relationships 

Consider a single beam-type member with six degrees of freedom at each end (ignoring warping). Two 

different types of action-deformation relationships can be derived for this example. In the first case, the 

total deformations in a particular degree of freedom can be computed from all actions that contribute 

towards this deformation, assuming that all non-participating DOFs are locked. The second type of 

relationships can be used to compute the restraining actions needed to prevent deformations in all 

contributing DOFs, while all other DOFs are assumed to be locked. These two approaches are the basis 

of the Flexibility and Stiffness Matrix, (or Force and Displacement Methods) for structural analysis, 

respectively. 
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1.4.1. Deformations for Applied Actions: Flexibility Relationships 

For linear elastic elements, it is possible to develop first type of relationships (relating the applied actions 

with corresponding degree-of-freedom deformations) using principles of mechanics of materials. All we 

need to know is the stiffness quantity relating each action-deformation pair. For a simple beam element 

with applied actions on its right end (and assuming the left end fully restrained), the three possible actions 

are shown in Figure 1-13. These are the axial load (P), shear force (V) and bending moment (M), 

corresponding to three assumed degrees of freedom on its right end. Table 1-1 shows the deformations 

in this beam member for few cases of applied actions. 

 
Figure 1-13: Three possible “actions” corresponding to deformations on three DOFs on right end 

 

Table 1-2: Some linear elastic flexibility relationships for a simple beam element 

Case Illustration Flexibility Relationships 

Axial deformation ∆ under 

lateral force P 
 

EA

LP
  

Vertical deformation “𝛿” 

and rotation “𝛼” under 

vertical force “V” only 

 

EI

VL

3

3


 

EI

VL

2

2

  

Vertical displacement “𝛿” 

and rotation “𝛼” under 

Moment (M) only 

 

EI

ML

2

2



 

EI

ML


 

Vertical displacement “𝛿” 

and rotation “𝛼” under 

combined shear force (V) 

and Moment (M) 

 











L

M
V

EI

L 3
2

6

3

  











 V

L

M

EI

L 2

2

2

  
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The rotation along the 

member (𝜃) due to torque 

(T) applied at the ends, 

excluding the effect of 

warping 

 

GJ

LT
  

 

It is important to note that in all flexibility relationships, actions are related to deformations by various 

cross-sectional properties (e.g. A, I and J), material properties (e.g. G and E) and length of member (L).   

 

1.4.2. Restraining Actions for Assumed Deformations: Stiffness Relationships 

For the derivation and development of the stiffness matrix and finite element methods for structural 

analysis, it is often convenient to develop second type of relationships (involving assumed deformations 

and the restraining actions needed to “prevent” that deformation). These are actually inverse of the 

relationships that are used to compute deformations for applied actions. For the same example beam 

element, the restraining actions against assumed deformations for few common cases are shown in table 

1-2. 

Table 1-3: Some restraining actions related by corresponding deformations through linear elastic stiffness 

Case 

Actions for assumed 

deformations: Stiffness 

relationships 

Axial force P due to axial deformation Δ 
L

AE
P 

 

Shear force V at the restraining end for 

deflection “𝜈” and rotation “𝛼” at the other end 


23

612

L

IE
v

L

IE
V 

 

Moment M at the restraining end for deflection 

“𝜈” and rotation “𝛼” at the other end 


L

IE
v

L

IE
M

46
2


 

Restraining torque T due to axial rotation 𝜃 
L

JG
T 

 

 

1.5. Static vs. Dynamic Problems 

A structural dynamic problem differs from its static loading counterpart in two important respects. 

The first difference to be noted, by definition, is the time-varying nature of the dynamic problem. Because 

both loading and response vary with time, it is evident that a dynamic problem does not have a single 

solution, as a static problem does; instead the analyst must establish a succession of solutions 

corresponding to all times of interest in the response history. Thus a dynamic analysis is clearly more 

complex and time consuming than a static analysis. 
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The second and more fundamental distinction between static and dynamic problems is the occurrence of 

inertial forces due to non-zero accelerations in dynamic problems. For example, if a simple beam is 

subjected to a static load p, its internal moments and shears and deflected shape depend only upon this 

load and they can be computed by established principles of force equilibrium (Figure 1-14(a)). On the 

other hand, if the load p(t) is applied dynamically, the resulting displacements of the beam depend not 

only upon this load but also upon inertial forces which oppose the accelerations producing them (Figure 

1-14(b)). Thus the corresponding internal moments and shears in the beam must equilibrate not only the 

externally applied force p(t) but also the inertial forces resulting from the accelerations of the beam. 

 
 

Figure 1-14: Basic difference between static and dynamic loads: (a) static loading; (b) dynamic loading. 

(Taken from Chopra (2012) Dynamics of Structures, 4th Edition) 

 

Inertial forces which resist accelerations of the structure in this way are the most important distinguishing 

characteristic of a structural dynamics problem. In general, if the inertial forces represent a significant 

portion of the total load equilibrated by the internal elastic forces of the structure, then the dynamic 

character of the problem must be accounted for in its solution. On the other hand, if the motions are so 

slow that the inertial forces are negligibly small, the analysis of response for any desired instant of time 

may be made by static structural analysis procedures even though the load and response may be time-

varying. 

 

1.6. Classification of Structural Models 

A structural model is a mathematical description of physical structure. It provides the link between the real 

physical system and the mathematically feasible solution. It is the symbolic designation for the substitute 

idealized system including all the assumptions imposed on the physical problem. 
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Figure 1-15: Continuous vs. discrete structural models 

 

1.7. Discretization of Structures 

The mass of a real structural component (say a beam) is distributed continuously along its length, the 

displacements and accelerations must be defined for each point along the axis if the inertial forces are to 

be completely defined. In this case, the analysis must be formulated in terms of partial differential 

equations because position along the span as well as time must be taken as independent variables. 

However, the analytical problem is greatly simplified by discretizing the structure by any of the ways 

explained below. 

 

1.7.1. Lumped Mass Procedure 

In lumped mass procedure, the mass of the structure is assumed to be concentrated at discrete points. 

The analytical solution becomes greatly simplified because inertial forces develop only at these mass 

points. In this case, it is necessary to define the displacements and accelerations only at these discrete 

locations. 
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Figure 1-16: Lumped-mass idealization of a simple beam. (Taken from Chopra (2012) Dynamics of 

Structures, 4th Edition) 

 

If the three masses in the system of Figure 1-16 are fully concentrated and are constrained so that the 

corresponding mass points translate only in a vertical direction, this would be called a three-degree-of-

freedom (3 DOF) system. On the other hand, if these masses are not fully concentrated so that they 

possess finite rotational inertia, the rotational displacements of the three points will also have to be 

considered, in which case the system has 6 DOF. If axial distortions of the beam are significant, 

translation displacements parallel with the beam axis will also result giving the system 9 DOF. 

More generally, if the structure can deform in three-dimensional space, each mass will have 6 DOF; then 

the system will have 18 DOF. However, if the masses are fully concentrated so that no rotational inertia is 

present, the three-dimensional system will then have 9 DOF. On the basis of these considerations, it is 

clear that a system with continuously distributed mass has an infinite number of degrees of freedom. 

 

1.7.2. Generalized Displacement Procedure 

The lumped-mass idealization described above provides a simple means of limiting the number of 

degrees of freedom that must be considered in conducting a dynamic analysis of an arbitrary structural 

system. The lumping procedure is most effective in treating systems in which a large proportion of the 

total mass actually is concentrated at a few discrete points. Then the mass of the structure which 

supports these concentrations can be included in the lumps, allowing the structure itself to be considered 

weightless. 

However, in cases where the mass of the system is quite uniformly distributed throughout, an alternative 

approach to limiting the number of degrees of freedom may be preferable. This procedure is based on the 

assumption that the deflected shape of the structure can be expressed as the sum of a series of specified 

displacement patterns; these patterns then become the displacement coordinates of the structure. A 

simple example of this approach is the trigonometric-series representation of the deflection of a simple 

beam. In this case, the deflection shape may be expressed as the sum of independent sine-wave 

contributions, as shown in Figure 1-17, or in mathematical form, 

𝜐(𝑥) = ∑
𝑏𝑛𝑛𝜋𝑥

𝐿

∞

𝑛=1

 

In general, any arbitrary shape compatible with the prescribed support conditions of the simple beam can 

be represented by this infinite series of sine-wave components. The amplitudes of the sine-wave shapes 

may be considered to be the displacement coordinates of the system, and the infinite number of degrees 

of freedom of the actual beam are represented by the infinite number of terms included in the series. The 

advantage of this approach is that a good approximation to the actual beam shape can be achieved by a 
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truncated series of sine-wave components; thus a 3 DOF approximation would contain only three terms in 

the series, etc. 

 
Figure 1-17: Sine-series representation of simple beam deflection. (Taken from Chopra (2012) Dynamics 

of Structures, 4th Edition) 

 

This concept can be further generalized by recognizing that the sine-wave shapes used as the assumed 

displacement patterns were an arbitrary choice in this example. In general, any shapes ψ n (x) which are 

compatible with the prescribed geometric-support conditions and which maintain the necessary continuity 

of internal displacements may be assumed. Thus a generalized expression for the displacements of any 

one-dimensional structure might be written 

𝜐(𝑥) =∑𝑍𝑛𝜓𝑛(𝑥)

𝑛

 

For any assumed set of displacement functions ψ(x), the resulting shape of the structure depends upon 

the amplitude terms Z n , which will be referred to as generalized coordinates. The number of assumed 

shape patterns represents the number of degrees of freedom considered in this form of idealization. In 

general, better accuracy can be achieved in a dynamic analysis for a given number of degrees of freedom 

by using the shape-function method of idealization rather than the lumped-mass approach. However, it 

also should be recognized that greater computational effort is required for each degree of freedom when 

such generalized coordinates are employed. (Taken from Chopra (2012) Dynamics of Structures, 4th 

Edition) 
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1.7.3. Finite Element Concept 

A third method of expressing the displacements of any given structure in terms of a finite number of 

discrete displacement coordinates, which combines certain features of both the lumped-mass and the 

generalized-coordinate procedures, has now become popular. This approach, which is the basis of the 

finite-element method of analysis of structural continua, provides a convenient and reliable idealization of 

the system and is particularly effective in digital-computer analyses. 

The finite-element type of idealization is applicable to structures of all types: framed structures, which 

comprise assemblages of one-dimensional members (beams, columns, etc.); plane-stress, plate- and 

shell-type structures, which are made up of two-dimensional components; and general three-dimensional 

solids. For simplicity, only the one-dimensional type of structural components will be considered in the 

present discussion, but the extension of the concept to two- and three-dimensional structural elements is 

straightforward. 

The first step in the finite-element idealization of any structure, e.g., the beam shown in Figure 1-18, 

involves dividing it into an appropriate number of segments, or elements, as shown. Their sizes are 

arbitrary; i.e., they may be all of the same size or all different. The ends of the segments, at which they 

are interconnected, are called nodal points. The displacements of these nodal points then become the 

generalized coordinates of the structure. 

 

 
Figure 1-18: Typical finite-element beam coordinates. (Taken from Chopra (2012) Dynamics of 

Structures, 4th Edition) 

 

The deflection shape of the complete structure can now be expressed in terms of these generalized 

coordinates by means of an appropriate set of assumed displacement functions using an expression 

similar to Eq. (1-2). In this case, however, the displacement functions are called interpolation functions 

because they define the shapes produced by specified nodal displacements. For example, Figure 1-18 

shows the interpolation functions associated with two degrees of freedom of nodal point 3, which produce 

transverse displacements in the plane of the figure. In principle, each interpolation function could be any 

curve which is internally continuous and which satisfies the geometric displacement condition imposed by 

the nodal displacement. For one-dimensional elements it is convenient to use the shapes which would be 
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produced by these same nodal displacements in a uniform beam. It will be shown later in Chapter 10 that 

these interpolation functions are cubic hermitian polynomials. 

Because the interpolation functions used in this procedure satisfy the requirements stated in the 

preceding section, it should be apparent that coordinates used in the finite-element method are just 

special forms of generalized coordinates. The advantages of this special procedure are as follows: 

a) The desired number of generalized coordinates can be introduced merely by dividing the structure 

into an appropriate number of segments. 

b) Since the interpolation functions chosen for each segment may be identical, computations are 

simplified. 

c) The equations which are developed by this approach are largely uncoupled because each nodal 

displacement affects only the neighboring elements; thus the solution process is greatly simplified. 

In general, the finite-element approach provides the most efficient procedure for expressing the 

displacements of arbitrary structural configurations by means of a discrete set of coordinates. (Taken from 

Chopra (2012) Dynamics of Structures, 4th Edition) 
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Figure 1-19: Three methods of discretization 
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(a) Examples of simple structures 

 
(b) An idealized model of simple structures subjected to a dynamic excitation 

 

Figure 1-20: Lumped mass and lumped stiffness idealization of a simple structure 

 

1.8. Equations of Motion 

The mathematical expressions defining the dynamic displacements are called the equations of motion of 

the structure, and the solution of these equations of motion provides the required displacement time 

histories. The formulation of the governing equations of motion is possibly the most important phase of 

the entire analysis procedure (and sometimes also the most difficult phase). 

There are three ways to formulate the equations of motion. 

a) Direct dynamic equilibration 

b) Principle of virtual work 

c) Variational Approach, Lagrange’s equations (Hamilton’s principle) 

 

1.8.1.  Direct Equilibrium using D'Alembert’s Principle  

Consider a system of dynamic forced applied to a mass 𝑚 as shown in Figure 1-21. 
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Figure 1-21: A mass m subjected to a system of dynamic forces 

 

𝒇𝟏, 𝒇𝟐, 𝒇𝟑 are applied forces vectors. 𝒂 is the acceleration of particle mass 𝑚. 

Newton’s 2nd law states that, “The rate of change of momentum of any mass m is equal to the force acting 

on it”. Therfore, 

𝒇𝟏(𝑡) + 𝒇𝟐(𝑡) + 𝒇𝟑(𝑡) =
𝑑

𝑑𝑡
(𝑚.

𝑑𝒓(𝑡)

𝑑𝑡
) = 𝑚

𝑑2𝒓

𝑑𝑡2
= 𝑚𝒂 

 
D’Alembert’s concept states that “A mass develops an inertia force in proportion to its acceleration and 

opposing it”. Therfore, 

𝒇𝟏(𝑡) + 𝒇𝟐(𝑡) + 𝒇𝟑(𝑡) + 𝒇𝑰(𝑡) = 𝟎 where 𝒇𝑰(𝑡)  =  −𝑚𝒂(𝑡) 

∑𝑭(𝑡) = 𝟎 

All dynamic forces are in equilibrium— Dynamic Equilibrium (including inertia force)  

This is a very convenient concept structure dynamics because its permits equations of motion to be 

expressed as of as “equations of dynamic equilibrium”.   

 

1.8.2. Principle of Virtual Work 

If the structural system is reasonably complex involving a number of interconnected mass points or 

bodies of finite size, the direct equilibration of all the forces acting in the system may be difficult. 

Frequently, the various forces involved may readily be expressed in terms of the displacement degrees of 

freedom, but their equilibrium relationships may be obscure. In this case, the principle of virtual 

displacements can be used to formulate the equations of motion as a substitute for the direct equilibrium 

relationships. 

The principle of virtual displacements may be expressed as follows. If a system which is in equilibrium 

under the action of a set of externally applied forces is subjected to a virtual displacement, i.e., a 

displacement pattern compatible with the system’s constraints, the total work done by the set of forces will 

be zero. The statement can be written as,  

“For a deformable body in equilibrium under a set of forces and moments, the sum of virtual work (internal 

and external) is zero. Virtual work is the work done by forces and moments under virtual displacements.” 
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∑𝛿𝑊 = 0 

With this principle, it is clear that the vanishing of the work done during a virtual displacement is 

equivalent to a statement of equilibrium. Thus, the response equations of a dynamic system can be 

established by first identifying all the forces acting on the masses of the system, including inertial forces 

defined in accordance with D’Alembert’s principle. Then, the equations of motion are obtained by 

separately introducing a virtual displacement pattern corresponding to each degree of freedom and 

equating the work done to zero. A major advantage of this approach is that the virtual work contributions 

are scalar quantities and can be added algebraically, whereas the forces acting on the structure are 

vectorial and can only be superposed vectorially. (Clough and Penzien (2003) Dynamics of Structures, 3rd 

Edition). 

1.8.3. Vriational Approach 

Another means of avoiding the problems of establishing the vectorial equations of equilibrium is to make 

use of scalar quantities in a variational form known as Hamilton’s principle. Inertial and elastic forces are 

not explicitly involved in this principle; instead, variations of kinetic and potential energy terms are utilized. 

This formulation has the advantage of dealing only with purely scalar energy quantities, whereas the 

forces and displacements used to represent corresponding effects in the virtual›work procedure are all 

vectorial in character, even though the work terms themselves are scalars. 

It is of interest to note that Hamilton’s principle can also be applied to statics problems. In this case, it 

reduces to the well-known principle of minimum potential energy so widely used in static analyses. 

Note: 

The equation of motion of a dynamic system can be formulated by any one of three distinct procedures. 

The most straightforward approach is to establish directly the dynamic equilibrium of all forces acting in 

the system, taking account of inertial effects by means of d’Alembert’s principle. In more complex 

systems, however, especially those involving mass and elasticity distributed over finite regions, a direct 

vectorial equilibration may be difficult, and work or energy formulations which involve only scalar 

quantities may be more convenient. The most direct of these procedures is based on the principle of 

virtual displacements, in which the forces acting on the system are evaluated explicitly but the equations 

of motion are derived by consideration of the work done during appropriate virtual displacements. 

On the other hand, the alternative energy formulation, which is based on Hamilton’s principle, makes no 

direct use of the inertial or conservative forces acting in the system; the effects of these forces are 

represented instead by variations of the kinetic and potential energies of the system. It must be 

recognized that all three procedures are completely equivalent and lead to identical equations of motion. 

The method to be used in any given case is largely a matter of convenience and personal preference; the 

choice generally will depend on the nature of the dynamic system under consideration. (Clough and 

Penzien (2003) Dynamics of Structures, 3rd Edition). 

 

1.9. Components of a Discrete Dynamic System 

If the roof of a simple structure is displaced laterally by a distance 𝑢𝑜 and then released, the idealized 

structure will oscillate around its initial equilibrium configuration as shown in the Figure 1-21. The 

displacement history shows the amplitude of roof displacement as a function of time.  
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Figure 1-21: The oscillation of a structure with amplitude 𝑢𝑜 

 

 
Figure 1-22: (a) Idealized pergola; (b) idealized water tank; (c) free vibration due to initial displacement. 

(Taken from Chopra (2012) Dynamics of Structures, 4th Edition) 

 

Figure 1-22 also shows an example of an idealized pergola and an idealized water tank. The 

displacement history (Figure 1-22 (c)) shows the amplitude of free vibration due to initial displacement as 

a function of time (Taken from Chopra (2012) Dynamics of Structures, 4th Edition). 
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The oscillation in these examples will continue with the same amplitude 𝑢𝑜 and the idealized structure will 

never come to rest. This is an unrealistic response because the actual structure will oscillate with 

decreasing amplitude and will eventually come to rest. 

To incorporate this feature into the idealized structure, an energy dissipating mechanism is required. 

Therefore, an energy absorbing element is introduced in the idealized structure which is called the 

viscous damping element (denoted by a dashpot). Hence, a dynamic system has three important 

components, as discussed below. 

 
Figure 1-23: The functional elements of a simple (discrete parameter) dynamic system. Many basic 

concepts in structural dynamics can be understood by studying this simple structure (also sometimes 

called a single-degree-of-freedom system) 

 

1.9.1. Mass and Inertial Force 

D’Alembert’s principle states that the mass develops an “inertial force” proportional to its acceleration in 

an opposing direction (𝐹 = 𝑚𝑎).  

Similarly, Newton;s 2nd law states that the rate of change of momentum of mass is equal to the force 

acting on it. 

𝑝(𝑡) =
𝜕

𝜕𝑡
(𝑚

𝜕𝑢

𝜕𝑡
) 

Where 𝑚
𝜕𝑢

𝜕𝑡
 is the momentum. Therefore, the mass of the structure and the resulting inertial force (𝑓𝐼) is 

an essential component of a dynamic system. 

𝑓𝐼 = 𝑚𝑢̈ 

 
Figure 1-24: Component 1 - The mass and inertial force 
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1.9.2. Lateral Stiffness and Elastic Restoring Force 

The elastic lateral stiffness of a structure (𝑘) and the resulting elastic restoring force (𝑓𝑠) is another 

important component of a dynamic system. For static analysis, only this component is considered. The 

lateral stiffness is generally modeled as a “spring”.  

𝑓𝑠 = 𝑘𝑢 

The area under the graphical relationship between elastic force 𝑓𝑠 and the structure’s displacement 𝑢 is a 

measure of the elastic potential energy (𝐸𝑠) stored in the structure.  

 
Figure 1-25: Component 2 - The elastic stiffness and elastic restoring force 

 
Sometimes it is necessary to determine the equivalent spring constant for a system in which two or more 

springs are arranged in parallel as shown in Figure 1-26 (a) or in series as in Figure 1-26 (b). 

 
 

Figure 1-26: Combination of springs. (a) Springs in parallel. (b) Springs in series. (Mario Paz (2003) 

Structural Dynamics: Theory and Computation, 5th Edition) 

 
For two springs in parallel the total force required to produce a relative displacement of their ends of one 

unit is equal to the sum of their spring constants. This total force is by definition the equivalent spring 

constant 𝑘𝑒 and is given by 

𝑘𝑒 = 𝑘1 + 𝑘2 
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In general for 𝑛 springs in parallel, 

𝑘𝑒 =∑𝑘𝑖

𝑛

𝑖=1

 

For two springs assembled in series as shown in Figure 1-26 (b), the force 𝑝 produces the relative 

displacements in the springs, 

Δ𝑦1 = 𝑝/𝑘1 and Δ𝑦2 = 𝑝/𝑘2 

Then, the total displacement 𝑦 of the free end of the spring assembly is equal to  𝑦 = Δ𝑦
1
+ Δ𝑦2  or 

substituting Δ𝑦1 and Δ𝑦2, 

𝑦 = 𝑝/𝑘1 + 𝑝/𝑘2 

Consequently, the force necessary to produce one unit displacement (equivalent spring constant) is given 

by 

𝑘𝑒 = 𝑝/𝑦  

Substituting 𝑦 from this last relation into above equation, we may conveniently express the reciprocal 

value of the equivalent spring constant as 

1

𝑘𝑒
=
1

𝑘1
+
1

𝑘2 
   

In general, for 𝑛 springs in series the equivalent spring constant may be obtained from, 

1

𝑘𝑒
=∑

1

𝑘𝑖

𝑛

𝑖=1
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Figure 1-27: (a) A portal frame subjected to an external force 𝑓𝑠, (b) The resisting force would be equal 

and in opposite direction to 𝑓𝑠, (c) A nonlinear relation between restoring force and displacement, and (d) 

A linear relationship between lateral restoring force and displacement (Taken from Chopra (2012) 

Dynamics of Structures, 4th Edition) 

 

Note: Shear Behavior vs. Flexural Behavior of Frame:  

Consider the frame of with bay width 𝐿, height ℎ, elastic modulus 𝐸, and second moment of the cross-

sectional area (or moment of inertia) about the axis of bending = 𝐼𝑏 and 𝐼𝑐 for the beam and columns, 

respectively; the columns are clamped (or fixed) at the base. The lateral stiffness of the frame can readily 

be determined for two extreme cases: If the beam is rigid [i.e., flexural rigidity 𝐸 𝐼𝑏  =  ∞ 

𝑘 = ∑
12𝐸𝐼𝑐
ℎ3

=
24𝐸𝐼𝑐
ℎ3

𝐶𝑜𝑙𝑢𝑚𝑛𝑠

 

On the other hand, for a beam with no stiffness [i.e., 𝐸𝐼𝑏  =  0] 

𝑘 = ∑
3𝐸𝐼𝑐
ℎ3

=
6𝐸𝐼𝑐
ℎ3

𝐶𝑜𝑙𝑢𝑚𝑛𝑠

 

Observe that for the two extreme values of beam stiffness, the lateral stiffness of the frame is 

independent of 𝐿, the beam length or bay width. The lateral stiffness of the frame with an intermediate, 

realistic stiffness of the beam can be calculated by standard procedures of static structural analysis. The 
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stiffness matrix of the frame is formulated with respect to three DOFs: the lateral displacement u and the 

rotations of the two beam–column joints. By static condensation or elimination of the rotational DOFs, the 

lateral force–displacement relation 𝐹 =  𝑘𝑢 is determined. 

 
 

Figure 1-28: A portal frame subjected to lateral force 𝑓𝑠, (b) An extreme case when the beam is rigid, i.e. 

having infinite stiffness, and (c) Another extreme case when beam has zero stiffness (Taken from Chopra 

(2012) Dynamics of Structures, 4th Edition) 

 

 

Figure 1-29: Variation of lateral stiffness, 𝑘, with beam-to-column stiffness ratio, 𝜌. (Taken from Chopra 

(2012) Dynamics of Structures, 4th Edition) 

 

If shear deformations in elements are neglected, the result can be written in the form 

𝑘 =
24𝐸𝐼𝑐
ℎ3

 
12𝜌 + 1

12𝜌 + 4
 

where 𝜌 = (𝐸𝐼𝑏/𝐿) ÷ (2𝐸𝐼𝑐/ℎ) is the beam-to-column stiffness ratio. The lateral stiffness is plotted as a 

function of 𝜌 in Figure 1-29; it increases by a factor of 4 as ρ increases from zero to infinity. 
 

1.9.3. Energy Dissipating Mechanism and Damping Force 

The process by which vibration steadily diminishes in amplitude is called damping. The kinetic energy and 

strain energy of the vibrating system are dissipated by various damping mechanisms that we shall 

mention later. For the moment, we simply recognize that an energy-dissipating mechanism should be 

included in the structural idealization in order to incorporate the feature of decaying motion observed 
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during free vibration tests of a structure. The most commonly used damping element is the viscous 

damper, in part because it is the simplest to deal with mathematically. 

 
Figure 1-30: Component 3 - The energy dissipating mechanism and damping force 

 
As mentioned earlier, the process by which free vibration steadily diminishes in amplitude is called 

damping. In damping, the energy of the vibrating system is dissipated by various mechanisms, and often 

more than one mechanism may be present at the same time. In simple “clean” systems such as the 

laboratory models of Figure 1-31, most of the energy dissipation presumably arises from the thermal 

effect of repeated elastic straining of the material and from the internal friction when a solid is deformed. 

In actual structures, however, many other mechanisms also contribute to the energy dissipation. In a 

vibrating building these include friction at steel connections, opening and closing of micro-cracks in 

concrete, and friction between the structure itself and nonstructural elements such as partition walls. It 

seems impossible to identify or describe mathematically each of these energy-dissipating mechanisms in 

an actual building.  

As a result, the damping in actual structures is usually represented in a highly idealized manner. For 

many purposes the actual damping in a SDF structure can be idealized satisfactorily by a linear viscous 

damper or dashpot. The damping coefficient is selected so that the vibrational energy it dissipates is 

equivalent to the energy dissipated in all the damping mechanisms, combined, present in the actual 

structure. This idealization is therefore called equivalent viscous damping. 

Figure 1-31 (a) shows a linear viscous damper subjected to a force 𝑓𝐷 along the DOF 𝑢. The internal 

force in the damper is equal and opposite to the external force 𝑓𝐷 (Figure 1-31 (b)). The damping force 𝑓𝐷 

is related to the velocity 𝑢̇ across the linear viscous damper by 

 𝑓𝐷 = 𝑐𝑢̇  

where the constant 𝑐 is the viscous damping coefficient; it has units of force × time/length. Unlike the 

stiffness of a structure, the damping coefficient cannot be calculated from the dimensions of the structure 

and the sizes of the structural elements. This should not be surprising because, as we noted earlier, it is 

not feasible to identify all the mechanisms that dissipate vibrational energy of actual structures. Thus 
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vibration experiments on actual structures provide the data for evaluating the damping coefficient. These 

may be free vibration experiments that lead to data. For example, the measured rate at which motion 

decays in free vibration will provide a basis for evaluating the damping coefficient. The damping property 

may also be determined from forced vibration experiments.  

 
Figure 1-31: (a) The assumed damping mechanism in a portal frame, (b) The damping force, and (c) 

The linear relationship between 𝑓𝐷 and velocity, 𝑢̇ (Taken from Chopra (2012) Dynamics of Structures, 

4th Edition) 

 

The equivalent viscous damper is intended to model the energy dissipation at deformation amplitudes 

within the linear elastic limit of the overall structure. Over this range of deformations, the damping 

coefficient 𝑐 determined from experiments may vary with the deformation amplitude. This nonlinearity of 

the damping property is usually not considered explicitly in dynamic analyses. It may be handled indirectly 

by selecting a value for the damping coefficient that is appropriate for the expected deformation 

amplitude, usually taken as the deformation associated with the linearly elastic limit of the structure. 

Additional energy is dissipated due to inelastic behavior of the structure at larger deformations. Under 

cyclic forces or deformations, this behavior implies formation of a force–deformation hysteresis loop 

(similar to Figure 1-8). The damping energy dissipated during one deformation cycle between deformation 

limits ± 𝑢𝑜 (Figure 1-21) is given by the area within the hysteresis loop abcda (Figure 1-27 (c)). This 

energy dissipation is usually not modeled by a viscous damper, especially if the excitation is earthquake 

ground motion. Instead, the most common, direct, and accurate approach to account for the energy 

dissipation through inelastic behavior is to recognize the inelastic relationship between resisting force and 

deformation (such as shown in Figure 1-27 (c)), in solving the equation of motion. Such force–

deformation relationships are obtained from experiments on structures or structural components at slow 

rates of deformation, thus excluding any energy dissipation arising from rate-dependent effects. The 

usual approach is to model this damping in the inelastic range of deformations by the same viscous 

damper that was defined earlier for smaller deformations within the linearly elastic range. 
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Chapter 2 

2. Dynamics of Single-Degree-of-Freedom (SDF) 

Systems 
 

The essential physical properties of any linearly elastic structural or mechanical system subjected to an 

external source of excitation or dynamic loading are its mass, elastic properties (flexibility or stiffness), 

and energy-loss mechanism or damping. In the simplest model of a single-degree-of-freedom (SDF) 

system, each of these properties is assumed to be concentrated in a single physical element. Figure 2-1 

shows some examples of structures that may be represented for dynamic analysis as single-degree-of-

freedom (SDF) systems, that is, structures modeled as systems with a single displacement coordinate. 

  
  

  
 

Figure 2-1: Some examples of structures which can be idealized as a single-degree-of-freedom (SDF) 

systems  



Part 1 - Structural Dynamics – The Basics 

Dynamics of Single-Degree-of-Freedom (SDF) Systems  37 

 

 

These single-degree-of-freedom systems may be described conveniently by the mathematical model 

shown in Figure 2-2 which has the following elements: (1) a mass element 𝑚 representing the mass and 

inertial characteristic of the structure; the entire mass 𝑚 of this system is included in the rigid block which 

is constrained by rollers so that it can move only in simple translation; thus, the single displacement 

coordinate 𝑢(𝑡) completely defines its position. (2) a spring element 𝑘 representing the lateral elastic 

restoring force and potential energy storage of the structure. This element represents the elastic 

resistance (provided by the weightless spring of stiffness 𝑘) of mass to its displacement, (3) a damping 

element 𝑐 representing the frictional characteristics and energy losses of the structure; and (4) an 

excitation force 𝑝(𝑡) representing the external applied dynamic force producing the dynamic response of 

this system. 

 
Figure 2-2: An idealized SDF system: (a) basic components; (b) forces in equilibrium (Clough and 

Penzien (2003) Dynamics of Structures, 3rd Edition). 

 

Similarly, consider a simple one-story building (idealized as shown in Figure 2-3) subjected to a dynamic 

force 𝑝(𝑡). The entire mass 𝑚 of this building is assumed to be included in the rigid block which is 

allowed to move only in simple lateral translation; thus, the single displacement coordinate 𝑢(𝑡) 
completely defines its position as a function of time.  

Therefore, at any instantaneous time, the mass 𝑚 is under the action of four dynamic forces. 

1. External dynamic force: 𝑝(𝑡) 

2. Inertia force: 𝑓𝐼 (𝑡) =  −
𝑚𝑑2𝑢(𝑡)

𝑑𝑡2
 

3. Elastic force: 𝑓𝑠(𝑡) =  −𝑘𝑢(𝑡), where 𝑘 is the lateral stiffness of the two columns combined. The 

negative sign means that the forces is always in the opposite direction to the structural deformation 

(this is to bring the structure back to its neutral position). 

4. Damping force: 𝑓𝐷(𝑡) = −𝑐
𝑑𝑢(𝑡)

𝑑𝑡
= 𝑐𝑢̇(𝑡), where 𝑐 is the damping coefficient of viscous damper. 

The units of 𝑐 are force×time/length). The negative sign means that the damping force is always in 

the opposite direction to velocity 𝑑𝑢/𝑑𝑡, hence it always dissipates energy. 
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Figure 2-3: (a) An SDF system; (b) stiffness component; (c) damping component; (d) mass component. 

 

2.1. Equation of Motion 

The motion of the idealized one-story structure caused by dynamic excitation is governed by an ordinary 

differential equation, called the “equation of motion”. A mentioned in Chapter 1, this equation can be 

determined using three approaches.  

Let’s first consider the direct equilibrium approach, i.e. the application of D’Alembert’s principle. The sum 

of all four forces must be zero. 

𝒇𝑰(𝑡) + 𝒇𝑫(𝑡) + 𝒇𝒔(𝑡) +  𝒑(𝑡) = 0 

Or  

𝑚
𝑑2𝒖(𝑡)

𝑑𝑡2
+
𝑐𝑑𝒖(𝑡)

𝑑𝑡
+ 𝑘𝒖(𝑡) = 𝑝(𝑡) 
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The vector can be converted to scalar function by  

𝒖(𝑡)  =  𝑢 .  𝒊 

𝑑𝒖(𝑡)

𝑑𝑡
=
𝑑𝑢

𝑑𝑡
 .  𝒊 

𝑑2𝒖(𝑡)

𝑑𝑡2
=
𝑑2𝑢

𝑑𝑡2
 .  𝒊 

𝒑(𝑡) = 𝑝 .  𝒊 

Both 𝑝 and 𝑢 are a function of time. Hence, the equation of motion in scalar form is  

𝑚𝑑2𝑢(𝑡)

𝑑𝑡2
+ 𝑐

𝑑𝑢(𝑡)

𝑑𝑡
+ 𝑘𝑢(𝑡) = 𝑝(𝑡) 

This is a second-order linear (ordinary) differential equation. (The equations describing the heat transfer 

or liquid flow from a porous medium will be first order ordinary differential equations). 

The same equation can also be formulated using the principle of virtual work as follows. 

 
Figure 2-4: The formulation of governing equation of motion for an SDF system using the principle of 

virtual work 

 

2.1.1. The Basic Knows and Unknowns 

In this governing equation of motion, the basic known quantities are the mass of the system (𝑚), applied 

dynamic load 𝑝(𝑡), lateral stiffness of the system (𝑘) and the damping coefficient of the system (𝑐).  
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The target of structural dynamic is to determine the basic unknown displacement of the system 𝑢(𝑡). The 

other response quantities (e.g. the response velocity 𝑑𝑢/𝑑𝑡, response acceleration 𝑑2𝑢/𝑑𝑡2, base 

shear, overturning moment etc.) can be subsequently derived from 𝑢(𝑡). 

For example, once the deformation response history 𝑢(𝑡) has been evaluated by dynamic analysis of the 

structure (i.e., by solving the equation of motion), the element forces—bending moments, shears, and 

axial forces—and stresses needed for structural design can be determined by static analysis of the 

structure at each instant in time (i.e., no additional dynamic analysis is necessary). This static analysis of 

a one-story linearly elastic frame can be visualized in two ways: 

1. At each instant, the lateral displacement 𝑢 is known. The joint rotations can be expressed in terms of 

this lateral displacement and hence can be determined. From the known displacement and rotation 

of each end of a structural element (beam and column), the element forces (bending moments and 

shears) can be determined through the element stiffness properties; and stresses can be obtained 

from element forces. 

2. The second approach is to introduce the equivalent static force which is a central concept in 

earthquake response of structures. At any instant of time 𝑡 this force 𝑓𝑒𝑞 is the static (slowly applied) 

external force that will produce the deformation 𝑢 determined by dynamic analysis. Thus  
 

𝑓𝑒𝑞 = 𝑘𝑢 

 

where 𝑘 is the lateral stiffness of the structure. Alternatively, 𝑓𝑒𝑞 can be interpreted as the external 

force that will produce the same deformation u in the stiffness component of the structure [i.e., the 

system without mass or damping] as that determined by dynamic analysis of the structure [i.e., the 

system with mass, stiffness, and damping]. Element forces or stresses can be determined at each 

time instant by static analysis of the structure subjected to the force 𝑓𝑒𝑞 determined from 𝑓𝑒𝑞 = 𝑘𝑢. 

Note:  

 

The example (idealized one-story) 

structure in Figure 2-3 is a single-degree-

of-freedom system because its motion 

can be completely describe by only one 

scalar function – 𝑢(𝑡). A 3-story building 

(as shown below in Figure 2-5) is a three-

degree-of-freedom system because at 

least 3 response functions 

(𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡)) are required to 

completely describe the overall motion of 

this structure.  

 Figure 2-5: A three-degree-of-freedom system 

 

2.1.2. Equation of Motion for an Earthquake 

Consider a case when an SDF system is subjected to a ground displacement 𝒖𝑔(𝑡). This represents an 

earthquake excitation (i.e. a ground motion assumed to be a one-dimensional lateral motion of ground). 

There is no external force applied to this SDF system.  
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Let’s denote the ground displacement, ground velocity and ground acceleration as 𝒖𝑔(𝑡),
𝑑𝒖𝒈(𝑡)

𝑑𝑡
,
𝑑2𝒖𝒈(𝑡) 

𝑑𝑡2
. 

The total displacement at the roof is defined by 𝑢𝑡(𝑡), where    

𝒖𝑡(𝑡) = 𝒖𝑔(𝑡) + 𝒖(𝑡) 

There are three dynamic forces acting on the roof mass:  

1. Elastic force  𝒇𝑠(𝑡) = −𝑘𝑢(𝑡)  

2. Damping force 𝒇𝐷(𝑡) = −
𝑐𝑑𝑢(𝑡)

𝑑𝑡
 

Each of these forces is a function of “relative” motion, and not the absolute (or total) motion. However the 

mass undergoes an acceleration of  
𝑑2𝒖𝑡

𝑑𝑡2
. 

Therefore 

3. Inertia force 𝒇I(t) = −𝑚
𝑑2𝒖(𝑡)

𝑑𝑡2
(𝑡) =  −𝑚

𝑑2𝒖𝒈(𝑡)

𝑑𝑡2
−𝑚

𝑑2𝒖(𝑡)

𝑑𝑡2
   

 

 
(a) Idealized structure (b) Free-body diagram 

  

Figure 2-6: One-story structure subjected to earthquake ground motion 𝒖𝑔(𝑡) 

 
Applying the D Alembert’s dynamic equilibrium to this case, we get, 

𝑚
𝑑2𝒖(𝑡)

𝑑𝑡2
+ 𝑐

𝑑𝒖(𝑡)

𝑑𝑡
+ 𝑘𝒖(𝑡) = −𝑚

𝑑2𝒖𝑔(𝑡)

𝑑𝑡2
 

In scalar form, 

𝑚
𝑑2𝑢(𝑡)

𝑑𝑡2
+ 𝑐

𝑑𝑢(𝑡)

𝑑𝑡
+ 𝑘𝑢(𝑡) = −𝑚

𝑑2𝑢𝑔(𝑡)

𝑑𝑡2
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This equation of motion is the governing equation of structural deformation 𝑢(𝑡), when the structure is 

subjected to ground acceleration 
𝑑2𝑢𝑔(𝑡)

𝑑𝑡2
. 

The deformation 𝑢(𝑡) of the structure due to ground acceleration 𝑢̈𝑔(𝑡) is identical to the deformation 

𝑢(𝑡) of the structure if its base were stationary and if it were subjected to an external force 𝑃𝑒𝑓𝑓(𝑡) =

−𝑚𝑢̈𝑔(𝑡).  

 
Figure 2-7: One-story building subjected to an earthquake 

 

The negative sign in this effective load definition indicates that the effective force opposes the sense of 

the ground acceleration. In practice, this has little significance as the engineer is usually only interested in 

the maximum absolute value of 𝑢(𝑡); in this case, the minus sign can be removed from the effective 

loading term. 

If we want to compare how large or damaging an earthquake is, we should compare and check 𝑢̈𝑔(𝑡) and 

not 𝑢(𝑡). 

For structural design against earthquakes, both the total (or absolute) and the relative values of these 

quantities may be needed. The relative displacement 𝑢(𝑡) associated with deformations of the structure 

is the most important since the internal forces in the structure are directly related to 𝑢(𝑡). 

 

2.2. Solution Methods for the Equations of Motion 

The equation of motion derived earlier (for a linear SDF system subjected to external force) is the second-

order differential equation. For any given excitation, this equation can be solved to determine all 

responses of a system. The initial displacement 𝑢(0) and initial velocity 𝑢̇(0) at time zero must also be 

specified to define the problem completely. Typically, the structure is at rest before the onset of any 

dynamic excitation, so that the initial velocity and displacement are zero. 

The equation of motion derived earlier can be solved using the following four approaches.  

2.2.1. Classical Solution 

The complete solution of the linear differential equation of motion consists of the sum of the 

complementary solution 𝑢𝑐(𝑡) and the particular solution 𝑢𝑝(𝑡), that is, 𝑢(𝑡) = 𝑢𝑐(𝑡) + 𝑢𝑝(𝑡) . Since the 
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differential equation is of second order, two constants of integration are involved. They appear in the 

complementary solution and are evaluated from the knowledge of the initial conditions. 

2.2.2. Duhamel’s Integral 

Another well-known approach to the solution of linear differential equations, such as the equation of 

motion of an SDF system, is based on representing the applied force as a sequence of infinitesimally 

short impulses. The response of the system to an applied force, 𝑝(𝑡), at time 𝑡 is obtained by adding the 

responses to all impulses up to that time.  

For an undamped SDF system subjected to an applied dynamic loading 𝑝(𝑡), the displacement 𝑢(𝑡) can 

be determined using the following integral known as Duhamel’s integral. This integral will be derived in a 

later topic while determining the the response of an SDF system subjected to a general dynamic loading. 

𝑢(𝑡)  =
1

𝑚𝜔𝑛
 ∫ 𝑝(𝜏)

𝑡

0

 𝑠𝑖𝑛[𝜔𝑛(𝑡 −  𝜏)] 𝑑𝜏 

where 𝜔𝑛 = √𝑘/𝑚. Implicit in this result are “at rest” initial conditions. Duhamel’s integral is a special form 

of the convolution integral found in textbooks on differential equations. 

Duhamel’s integral provides an alternative method to the classical solution if the applied force 𝑝(𝑡) is 

defined analytically by a simple function that permits analytical evaluation of the integral. For complex 

excitations that are defined only by numerical values of 𝑝(𝑡) at discrete time instants, Duhamel’s integral 

can be evaluated by numerical methods. 

2.2.3. Frequency-Domain Method 

The Laplace and Fourier transforms provide powerful tools for the solution of linear differential equations, 

in particular the equation of motion for a linear SDF system. Because the two transform methods are 

similar in concept, here we mention only the use of Fourier transform, which leads to the frequency-

domain method of dynamic analysis.  

The Fourier transform 𝑃(𝜔) of the excitation function 𝑝(𝑡) is defined by 

𝑃(𝜔) = ℱ[𝑝(𝑡)] = ∫ 𝑝(𝑡)
+∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

The Fourier transform 𝑈(𝜔) of the solution 𝑢(𝑡) of the differential equation is then given by 

𝑈(𝜔)  =  𝐻(𝜔) 𝑃(𝜔) 

where the complex frequency-response function 𝐻(𝜔) describes the response of the system to harmonic 

excitation. Finally, the desired solution 𝑢(𝑡) is given by the inverse Fourier transform of 𝑈(𝜔). 

𝑢(𝑡) =
1

2𝜋
∫ 𝐻(𝜔) 𝑃(𝜔)𝑒−𝑖𝜔𝑡
+∞

−∞

𝑑𝜔 

Straightforward integration can be used to evaluate the integral of Fourier transform 𝑃(𝜔), but contour 

integration in the complex plane is necessary for to solve the integral for  𝑢(𝑡). Closed-form results can be 

obtained only if 𝑝(𝑡) is a simple function, and application of the Fourier transform method was restricted to 

such 𝑝(𝑡) until high-speed computers became available. 

The Fourier transform method is now feasible for the dynamic analysis of linear systems to complicated 

excitations 𝑝(𝑡) or 𝑢̈𝑔(𝑡) that are described numerically. In such situations, the integrals of both of above 
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equations are evaluated numerically by the “discrete Fourier transform method” using the “fast Fourier 

transform algorithm” developed in 1965. 

The frequency-domain method of dynamic analysis is symbolized by above two integral equations. The 

first gives the amplitudes 𝑃(𝜔) of all the harmonic components that make up the excitation 𝑝(𝑡). The 

second integral equation can be interpreted as evaluating the harmonic response of the system to each 

component of the excitation and then superposing the harmonic responses to obtain the final response 

(𝑡) .  

The frequency-domain method, which is an alternative to the time-domain method symbolized by 

Duhamel’s integral, is especially useful and powerful for dynamic analysis of structures interacting with 

unbounded media. Examples are (1) the earthquake response analysis of a structure where the effects of 

interaction between the structure and the unbounded underlying soil are significant, and (2) the 

earthquake response analysis of concrete dams interacting with the water impounded in the reservoir that 

extends to great distances in the upstream direction.  

2.2.4. Numerical Methods 

The preceding three dynamic analysis methods are restricted to linear systems and cannot consider the 

inelastic behavior of structures anticipated during earthquakes if the ground shaking is intense. The only 

practical approach for such systems involves numerical time-stepping methods, which will be presented 

as a separate topic in later part. These methods are also useful for evaluating the response of linear and 

nonlinear systems to excitation (applied force 𝑝(𝑡) or ground motion 𝑢̈𝑔(𝑡)) which is too complicated to be 

defined analytically and is described only numerically. 

 

2.3. Free Vibration Response of an SDF System 

Let’s consider the motion of an SDF system with the applied force set equal to be zero. The determination 

of this free vibration response would require the solution of the following homogeneous equation. 

𝑚𝑢̈(𝑡) + 𝑐𝑢̇(𝑡) + 𝑘𝑢(𝑡) = 0 

Where 𝑢̈(𝑡) =
𝑑2𝑢(𝑡)

𝑑𝑡2
 and 𝑢̇(𝑡) =

𝑑𝑢(𝑡)

𝑑𝑡
. 

A Quick Review of Basic Concepts: 

 

(a) Solution form :  

Consider a first-order differential equation  

𝑑𝑢(𝑡)

𝑑𝑡
+ 𝑘𝑢(𝑡) = 0 

𝑑𝑢

𝑑𝑡
= −𝑘𝑢(𝑡) 

By separation of variables,  

𝑑𝑢

𝑢(𝑡)
= −𝑘𝑑𝑡 

Integrated both sides  

𝑙𝑛𝑢 = −𝑘𝑡 + 𝑐 

Where 𝑐 is an arbitrary constant. 
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By applying exponential operation 

𝑒𝑙𝑛𝑢 = 𝑢 = 𝑒(−𝑘𝑡+𝑐) = 𝑒−𝑘𝑡  𝑒𝑐 = 𝑐𝑜 𝑒
−𝑘𝑡 

The solution:  

𝑢(𝑡) = 𝑐𝑜𝑒
−𝑘𝑡 

where 𝑐0 is an arbitrary constant. 

 

It can be shown that the solution of higher order differential equation are also in this exponential form.  

 

(b) Superposition: 

If a solution of a homogeneous linear differential equation is the multiplied by a constant, the 

resulting function is also a solution. 

 

The sum of two solutions is also a solution  

Proof:  

Let 𝜙1(𝑡) and 𝜙2(𝑡) be independent solutions of governing differential equation of an SDF system, 

such that  

𝑚𝜙1̈(𝑡) + 𝑐𝜙1̇(𝑡) + 𝑘𝜙1(𝑡) = 0 

𝑚𝜙2̈(𝑡) + 𝑐𝜙1̇(𝑡) + 𝑘𝜙2(𝑡) = 0 

 

Substituting 𝑐1𝜙1(𝑡) info the left-hand side of equation of motion, we get 

𝑚(𝑐1𝜙1̈ (𝑡)) + 𝑐(𝑐1𝜙1̇ (𝑡)) + 𝑘(𝑐1𝜙1(𝑡)) = 0 

𝑐1[𝑚𝜙1̈(𝑡) + 𝑐𝜙1̇(𝑡) + 𝑘𝜙1(𝑡)] = 0 

Hence c1ϕ1(t) is also a solution of equation of motion 

In similar manner, by a direct substitution of  𝑐1𝜙1(𝑡) + 𝑐2𝜙2(𝑡) into the first equation, it can be 

shown that 𝑐1𝜙1(𝑡) + 𝑐2𝜙2(𝑡) is also a solution of equation of motion. 

 

(c) Initial Conditions 

Consider 𝑢(𝑡) = 𝑐1𝜙1(𝑡) + 𝑐2𝜙2(𝑡) as a general solution of governing equation of motion. Since 

the constants 𝑐1 and 𝑐2 can have any value, the general solution can represent ∞ different 

solutions.  

Usually initial conditions are known and we are seeking for one specific solution that satisfies 

those initial conditions.  

Example of initial conditions: 

𝑢(0) and 𝑢̇(0) are the initial displacement and initial velocity of the SDF system. Two conditions 

are needed because there are two unknown arbitrary constants to be specified.  

𝑢(0) = 𝑐1𝜙1(0) + 𝑐2𝜙2(0) 

𝑢̇(0) = 𝑐1𝜙̇1(0) + 𝑐2𝜙̇2(0) 

 

𝜙1(0), 𝜙2(0), 𝜙̇1(0), 𝜙̇2(0), 𝑢(0) and 𝑢̇(0) all are known. Therefore 𝑐1 and 𝑐2 can be determined. 

 

For more details, see Erwin Kreyszig’s Advanced Engineering Mathematics, John Wiley & Sons. 

 

 

Now consider the equation governing the free vibration of an SDF system as follows. 

𝑚𝑢̈(𝑡) + 𝑐𝑢̇(𝑡) + 𝑘𝑢(𝑡) = 0 

Assume the solution in the exponential form: 
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𝑢(𝑡) = 𝐺𝑒𝑠𝑡 

Where 𝐺 and 𝑠 are constants. Substituting this solution back into the equation of motion,   

𝑚𝑠2𝐺𝑒𝑠𝑡 + 𝑐𝑠𝐺𝑒𝑠𝑡 + 𝑘𝐺𝑒𝑠𝑡 = 0 

(𝑚𝑠2 + 𝑐𝑠 + 𝑘)𝐺𝑒𝑠𝑡 = 0 

To have a non-zero solution of 𝑢(𝑡), the 𝑚𝑠2 + 𝑐𝑠 + 𝑘 must be zero,  

𝑠2 +
𝑐

𝑚
𝑠 +

𝑘

𝑚
= 0  

 

2.3.1. Undamped Free vibration Response 

In this case, 𝑐 = 0. 

Introducing the notation 

𝜔 = √𝑘/𝑚  

The above equation becomes, 

𝑠2 + 𝜔2 = 0 

Which has two solutions, 

𝑠 = ±𝑖𝜔 

Where 𝑖 = √−1 

Hence the general solution of 𝑢(𝑡) is  

𝑢(𝑡) = 𝐺1𝑒
𝑖𝜔𝑡 + 𝐺2𝑒

−𝑖𝜔𝑡 

Where 𝐺1 and 𝐺2 are arbitrary constants.  

Since there are two arbitrary constants, two initial conditions need to specified, i.e. 𝑢(0) and 𝑢̇(0). 

𝑢(0) = 𝐺1𝑒
0 + 𝐺2𝑒

0 = 𝐺1 + 𝐺2 

𝑢̇(0) = 𝑖𝜔𝐺1𝑒
0 − 𝑖𝜔𝐺2𝑒

0 = 𝑖𝜔𝐺1 − 𝑖𝜔𝐺2 

Therefore, 

𝐺1 =
1

2
(𝑢(0) +

𝑢̇(0)

𝑖𝜔
) 

𝐺2 =
1

2
(𝑢(0) −

𝑢̇(0)

𝑖𝜔
) 

 

Note: 
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Taylor Series: 

−∞ < 𝑥 < ∞ 

𝑒𝑥 = 1 +
𝑥

1!
+
𝑥2

2!
+
𝑥3

3!
+ ⋯   

𝑒𝑖𝜔𝑡 = 1 + 𝑖𝜔𝑡 +
(𝑖𝜔𝑡)2

2!
+
(𝑖𝜔𝑡)3

3!
+ ⋯ 

𝑒𝑖𝜔𝑡 = 1 + 𝑖𝜔𝑡 + (−1)
(𝜔𝑡)2

2!
+ (−1)

𝑖(𝜔𝑡)3

3!
+ ⋯ 

𝑒𝑖𝜔𝑡 = {1 −
(𝜔𝑡)2

2!
+ ⋯} + 𝑖 {𝜔𝑡 −

(𝜔𝑡)3

3!
+ ⋯} 

Taylor series of cos(𝜔𝑡) is 

1 −
(𝜔𝑡)2

2!
+ ⋯ 

Similarly, the Taylor series of sin(𝜔𝑡) is 

𝜔𝑡 −
(𝜔𝑡)3

3!
+ ⋯ 

Therefore,  

𝑒𝑖𝜔𝑡 = cos (𝜔𝑡) + 𝑖sin(𝜔𝑡) 

This is called Euler’s equation. 

 

 

Introducing Euler's equations:  

𝑒±𝑖𝜔𝑡 = cos(𝜔𝑡) ± 𝑖sin(𝜔𝑡) 

Introducing the expressions for 𝐺1 and 𝐺2 into the general solution, we obtain 

𝑢(𝑡) = 𝑢(0) cos(𝜔𝑡) +
𝑢̇(0)

𝜔
sin(𝜔𝑡) 

It is easy to verify that this equation is the solution of governing equation of motion by direct substitution. 
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Deformed position of structure corresponding to location 1, 2, 3, 4 and 5 on response-time plot 
 

Figure 2-8: Undamped free vibration of an SDF system 

 
The structure vibrates in simple harmonic motion (or oscillation). 

The amplitude of oscillation depends upon 𝑢(0) and 𝑢̇(0). The above equation may be transformed into 

𝑢(𝑡) = 𝜌 cos (𝜔𝑡− 𝜃) 

Where  

𝜌 = √(𝑢(0))
2
+ (

𝑢̇(0)

𝜔
)

2

 

𝜃 = tan−1 (
𝑢̇(0)

𝜔𝑢(0)
) 

The oscillation does not decay because the structure is undamped. The period of oscillation 𝑇 is the time 

required for one cycle of free oscillation. For undamped structure,  

𝑇 =
2𝜋

𝜔
=
1

𝑓
 

Where 𝜔 is the natural circular frequency, 𝑓 is the natural (cyclic) frequency (cycle/sec, Hz) and 𝑇 is the 

natural period (sec). This term "natural" is used to qualify each of the above quantities to emphasize the 

fact that these are “natural properties” of the structure. These properties are independent of the initial 

conditions. 

The natural (cyclic) frequency 𝑓 of a one-story building is around 1 Hz. For 15-story building, it is around 1 

Hz. For a 60 to 70 story building, it is 0.2 to 0.3 Hz i.e. the building will take 3 to 5 seconds to complete 

one oscillation depending upon the ratio of mass to its stiffness.    

 

 

2.3.2. Damped Free Vibration 

In this case 𝑐 ≠ 0; i.e. damping is present in the structure. The solutions of 𝑠2 +
𝑐

𝑚
𝑠 +

𝑘

𝑚
= 0 for this 

case are   

𝑠 = −
𝑐

2𝑚
±√(

𝑐

2𝑚
)
2

− 𝜔2 

The characteristics of “𝑠" depends upon the sign of the term {(
𝑐

2𝑚
)
2
−𝜔2}   

The equation will have distinct real roots, if (
𝑐

2𝑚
)
2
− 𝜔2 > 0 

The equation will have complex conjugate root, if (
𝑐

2𝑚
)
2
−𝜔2 < 0 
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The equation will have real double roots, if (
𝑐

2𝑚
)
2
− 𝜔2 = 0 

Case 1: Underdamped System (𝑐 <  2𝑚𝜔, complex conjugate solution of 𝑠)  

The damping constant 𝑐 is a measure of the energy dissipated in a cycle of free vibration or in a cycle of 

forced harmonic vibration. However, the damping ratio—a dimensionless measure of damping—is a 

property of the system that also depends on its mass and stiffness.  

Let’s define 𝑐𝑐: critical damping: 𝑐𝑐 ≡  2𝑚𝜔 

Let’s define 𝜉: critical damping ratio; 𝜉 ≡  𝑐/𝑐𝑐  =  𝑐/2𝑚𝜔 

Hence, in underdamped systems, 0 <  𝜉 < 1 

Rewriting the solution in terms of 𝜉, we get 

𝑠 = −𝜉𝜔 ± √(𝜉𝜔)2 − 𝜔2 

𝑠 = −𝜉𝜔 ± √𝜔2(1 − 𝜉2) √−1 

𝑠 = −𝜉𝜔± 𝑖𝜔𝐷 

Where   

𝜔𝐷 = 𝜔√1 − 𝜉
2 

𝑇𝐷 =
𝑇

√1 − 𝜉2
 

Then the general solution of 𝑢(𝑡) is  

𝑢(𝑡) = 𝐺1𝑒
𝑠1𝑡 + 𝐺2𝑒

𝑠2𝑡 = (𝐺1𝑒
−𝜉𝜔𝑡+𝑖𝜔𝐷𝑡 + 𝐺2𝑒

−𝜉𝜔𝑡−𝑖𝜔𝐷𝑡) 

𝑢(𝑡) = 𝑒−𝜉𝜔𝑡(𝐺1𝑒
−𝑖𝜔𝐷𝑡 + 𝐺2𝑒

−𝑖𝜔𝐷𝑡) 

When the initial conditions of 𝑢(0) are introduced, the constants 𝐺1 and 𝐺2 can be evaluated, and after 

using Euler’s equations we finally obtain,  

𝑢(𝑡) = 𝑒−𝜉𝜔𝑡 [
𝑢̇(0) + 𝑢(0)𝜉𝜔

𝜔𝐷
sin(𝜔𝐷𝑡) + 𝑢(0) cos(𝜔𝐷𝑡)] 

The response in above equation can also be presented as  

𝑢(𝑡) = 𝑒−𝜉𝜔𝑡𝜌 cos(𝜔𝐷𝑡 − 𝜃) 

Where 

𝜌 = √(
(𝑢̇(0) + 𝑢(0)𝜉𝜔)

𝜔𝐷
)

2

+ (𝑢(0))
2
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𝜃 = tan−1
𝑢̇(0) + 𝑢(0)𝜉𝜔

𝜔𝐷𝑢(0)
 

The above equations say that the underdamped system in its free vibration stage will oscillate with 

circular frequency 𝜔𝐷  and with exponentially decreasing amplitude.  

 
Figure 2-9: The effect of damping on free vibration 

 
In most structures, the critical damping ratio 𝜉 is less than 0.2 (see Figure 2-10 below) and hence, 𝜔𝐷 =

𝜔 and 𝑇𝐷 = 𝑇. The rate of amplitude decay depends on 𝜉 (see Figure 2-11).  



Part 1 - Structural Dynamics – The Basics 

Dynamics of Single-Degree-of-Freedom (SDF) Systems  51 

 

 
Figure 2-10: The effect of damping on natural frequency of vibration 

 

 
Figure 2-11: The effect of damping on free vibration. Curves 1, 2, 3 and 4 are for damping ratio 0, 1, 2 

and 5 percent 

 

In seismic design of most structures, 𝜉 = 0.05 is used. For tall buildings subjected to strong winds, we 

generally assume 𝜉 = 0.005 − 0.02. For single cables, 𝜉 = 0.003 − 0.01.  

 

Table: Typical damping ratios for common types of construction 

Type of Construction  Typical Damping Ratios 

(𝜉) 

Steel frame with welded connections and 0.02 
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flexible walls 

Steel frame with welded connections, 

normal floors and exterior cladding 

0.05 

Steel frame with bolted connections, normal 

floors and exterior cladding 

0.1 

Concrete frame with flexible internal walls 0.05 

Concrete frame with flexible internal walls 

and exterior cladding 

0.07 

Concrete frame with concrete or masonry 

shear walls 

0.1 

Concrete or masonry shear wall 0.1 

Wood frame and shear wall 0.15 

 

Case 2: Critical Damped System (𝒄 =  𝒄𝒄  =  𝟐𝒎𝝎) 

In this case, 𝑐 =  𝑐𝑐  =  2𝑚𝜔 and 𝜉 = 1. This will yield,  

𝑠 = −𝜔 

The general solution of the governing equation of motion in this case will be of the form.  

𝑢(𝑡) = 𝐺1𝑒
𝑠𝑡 + 𝑡 𝐺2𝑒

𝑠𝑡 = (𝐺1 + 𝑡 𝐺2)𝑒
−𝜔𝑡) 

The second term must contain 𝑡 since the two roots of quadratic equation in 𝑠 are identical. 

𝑢̇(𝑡) = −𝜔(𝐺1 + 𝑡 𝐺2)𝑒
−𝜔𝑡) + 𝐺2𝑒

−𝜔𝑡 

Using initial conditions 𝑢(0) and 𝑢̇(0), the constants 𝐺1 and 𝐺2 can be determined as follows. 

𝐺1 = 𝑢(0) 

𝐺2 = 𝑢̇(0) + 𝜔 𝑢(0) 

The general solution will be,  

𝑢(𝑡) = [𝑢(0)(1 + 𝜔𝑡) + 𝑢̇(0)𝑡]𝑒−𝜔𝑡 

No oscillations. Damping just eliminated them. 

The above expression is shown graphically in Figure below for positive values of u(0) and u̇(0). Note that 

this free response of a critically-damped system does not include oscillation about the zero-deflection 

position; instead it simply returns to zero asymptotically in accordance with the exponential term of above 

equation. However, a single zero-displacement crossing would occur if the signs of the initial velocity and 

displacement were different from each other. A very useful definition of the critically-damped condition 

described above is that it represents the smallest amount of damping for which no oscillation occurs in 

the free-vibration response (Clough and Penzien (2003) Dynamics of Structures, 3rd Edition). 
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Free-vibration response with critical damping (Clough and Penzien (2003) Dynamics of Structures, 3rd 

Edition). 

 

Case 3: Over Damped System (𝒄 >  𝒄𝒄) 

 

The above equation shows that the response of an overcritically-damped system is similar to the motion 

of a critically-damped system. However, the asymptotic return to the zero-displacement position is slower 

depending upon the amount of damping. 
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Free vibration of under-damped, critically damped, and over-damped systems (Chopra (2012) Dynamics 

of Structures, 4th Edition) 

 

Figure shows a plot of the motion 𝑢(𝑡) due to initial displacement 𝑢(0) for three values of 𝜉. If 𝑐 < 𝑐𝑐 or  

𝜉 < 1, the system oscillates about its equilibrium position with a progressively decreasing amplitude. If 

𝑐 = 𝑐𝑐 or 𝜉 = 1, the system returns to its equilibrium position without oscillating. If 𝑐 > 𝑐𝑐 or 𝜉 > 1, again 

the system does not oscillate and returns to its equilibrium position, as in the 𝜉 = 1 case, but at a slower 

rate. 

The damping coefficient 𝑐𝑐 is called the critical damping coefficient because it is the smallest value of c 

that inhibits oscillation completely. It represents the dividing line between oscillatory and non-oscillatory 

motion. 

The rest of this presentation is restricted to under-damped systems (𝑐 < 𝑐𝑐) because structures of 

interest—buildings, bridges, dams, nuclear power plants, offshore structures, etc.—all fall into this 

category, as typically, their damping ratio is less than 0.10. There-fore, we have little reason to study the 

dynamics of critically damped systems (𝑐 = 𝑐𝑐) or over-damped systems (𝑐 > 𝑐𝑐) . Such systems do 

exist, however; for example, recoil mechanisms, such as the common automatic door closer, are 

overdamped; and instruments used to measure steady-state values, such as a scale measuring dead 

weight, are usually critically damped. Even for automobile shock absorber systems, however, damping is 

usually less than half of critical, 𝜉 < 0.5. (Chopra (2012) Dynamics of Structures, 4th Edition) 

 

2.3.3. Decay of Free Vibration Response 

The true damping characteristics of typical structural systems are very complex and difficult to define. 

However, it is common practice to express the damping of such real systems in terms of equivalent 

viscous-damping ratios 𝜉 which show similar decay rates under free-vibration conditions. Therefore, let us 

now relate more fully the viscous-damping ratio 𝜉 to the free-vibration response (Clough and Penzien 

(2003) Dynamics of Structures, 3rd Edition). 

It can be shown that the ratio of any two successive peaks is 

𝑢𝑖
𝑢𝑖+1

= 𝑒
(−2𝜋𝜉

𝜔
𝜔𝐷

)
 

Taking the natural logarithm on both sides gives the logarithmic decrement 𝛿, as follows. 
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𝛿 ≡ 𝑙𝑛
𝑢𝑖
𝑢𝑖+1

= 2𝜋𝜉
𝜔

𝜔𝐷
 

Hence for structure with low 𝜉,   

𝛿 ≈ 2𝜋𝜉 

The above equation is very useful and can be used for the identification of 𝜉 in existing structures. 

Because it is not possible to determine analytically the damping ratio 𝜉 for practical structures, this elusive 

property should be determined experimentally. Free vibration experiments provide one means of 

determining the damping. 

Sometimes it is more appropriate to consider the ratio 
𝑢𝑖

𝑢𝑖+𝑚
 where 𝑚 > 1, 

𝑙𝑛
𝑢𝑖
𝑢𝑖+𝑚

= 2𝑚𝜋𝜉
𝜔

𝜔𝐷
 

𝜉 ≈
1

2𝑚𝜋
 𝑙𝑛 (

𝑢𝑖
𝑢𝑖+1

) 

To determine the number of cycles elapsed for a 50% reduction in displacement amplitude, we obtain the 

following relation from the above equation. 

𝑚50% =
0.11

𝜉
 

 
Figure 2-12: Measured displacement response from a free-vibration test 

 

When damped free vibrations are observed experimentally, a convenient method for estimating the 

damping ratio is to count the number of cycles required to give a 50 percent reduction in amplitude. The 

relationship to be used in this case is presented graphically below. As a quick rule of thumb, it is 

convenient to remember that for percentages of critical damping equal to 10, 5, and 2.5, the 

corresponding amplitudes are reduced by 50 percent in approximately one, two, and four cycles, 

respectively. 
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Exact and approximate relations between 

logarithmic decrement and damping ratio (Chopra 

(2012) Dynamics of Structures, 4th Edition) 

The number of cycles required to 

reduce the free vibration amplitude by 50% 

(Chopra (2012) Dynamics of Structures, 4th Edition) 

 

The natural period 𝑇𝐷 of the system can also be determined from the free vibration record by measuring 

the time required to complete one cycle of vibration. Comparing this with the natural period obtained from 

the calculated stiffness and mass of an idealized system tells us how accurately these properties were 

calculated and how well the idealization represents the actual structure (Chopra (2012) Dynamics of 

Structures, 4th Edition). 

 

2.4. Unsolved Examples: Free Vibration Response of an SDF 

System 

 
Example 1: For an undamped SDF system shown below, 𝑓 = 3.183 Hz. If 800 kg is added to mass 𝑚, 

the frequency is reduced to 𝑓 = 2.690 Hz. Determine the mass 𝑚 and stiffness 𝑘.  

 
 

 

Example 2: Consider the same SDF system with damping. Suppose that a free vibration response test is 

applied to this system and the resulting response is shown below. 
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Determine the damping coefficient 𝑐 and critical damping ratio 𝜉. 

 
Example 3: For the same SDF system shown above, determine the free vibration response (both 

undamped and damped) for the following three initial conditions. 

a) 𝑢(0) = 0.03 𝑚, 𝑢̇(0) = 0 𝑚/𝑠 

b) 𝑢(0) = 0.03 𝑚, 𝑢̇(0) = 0.2 𝑚/𝑠 

c) 𝑢(0) = 0.03 𝑚, 𝑢(0.5 𝑠𝑒𝑐) = −0.02 𝑚/𝑠 

For all cases, calculate maximum lateral displacement, velocity and base shear. 

 
Example 4: A simple structure (which can be modeled as a single-degree-of-freedom, SDF system) is 

shown in Figure Ex.1 below. Its whole mass 10,000 Kg is lumped at top which is supported by two steel 

columns with hollow cross-sections. The mass is also laterally restrained by a structural component with a 

given lateral stiffness (represented by a spring in the Figure Ex.1). The columns are firmly fixed to the 

rigid ground. Important structural dimensions and the column’s cross-section are shown in Figure. 

Modulus of elasticity of steel is 2 × 1011 𝑁/𝑚2. 
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Figure Ex. 1: A simple structure supported by two ciolumns and a lateral spring 

 
a) Determine the natural frequency (𝑓), natural circular frequency (𝜔) and the natural time period 

(𝑇) of this simple structure.  

b) If the top mass is displaced laterally by 20 mm and released, it will start oscillating (free vibration 

response). Determine the analytical solution (expression) for the displacement response of this 

structure and plot it from 𝑡 = 0 to 𝑡 =  10 sec. Assume that the structure doesn’t have any 

energy dissipation.   

c) If the critical damping ratio (𝜉) of this structure is 0.05, determine the analytical solution 

(expression) for the damped displacement response of structure and plot it from 𝑡 = 0 to 𝑡 =  10 

sec.  

Solution: 

 

Lateral stiffness of a column with support conditions shown in Figure Ex. 1 = 3𝐸𝐼/𝐿3 
  
The free vibration response of an un-damped SDF system: 
 

𝑢(𝑡) = 𝑢(0) cos(𝜔𝑡) +
𝑢̇(0)

𝜔
𝑠𝑖𝑛(𝜔𝑡) 
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Or 

𝑢(𝑡) = 𝜌 cos (𝜔𝑡 − 𝜃) 

Where  

𝜌 = √𝑢2(0) + (
𝑢̇(0)

𝜔
)

2

 

𝜃 = tan−1 (
𝑢̇(0)

𝜔𝑢(0)
) 

The free vibration response of a damped SDF system: 
 

𝑢(𝑡) = 𝑒−𝜉𝜔𝑡 [
𝑢̇(0) + 𝑢(0)𝜉𝜔

𝜔𝐷
sin(𝜔𝐷𝑡) + 𝑢(0) cos(𝜔𝐷𝑡)] 

Or 

𝑢(𝑡) = 𝑒−𝜉𝜔𝑡  𝜌 cos(𝜔𝐷𝑡 − 𝜃) 

Where 

𝜌 = √(
(𝑢̇(0) + 𝑢(0)𝜉𝜔)

𝜔𝐷
)

2

+ (𝑢(0))
2
 

𝜃 = tan−1
𝑢̇(0) + 𝑢(0)𝜉𝜔

𝜔𝐷𝑢(0)
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Elastic Stiffness 

Deflection and stiffness for various systems (due to bending moment only) 
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2.5. Response to Harmonic Loading 

In this section, the response of simple structures to harmonic loading is investigated.  

 

Figure 2-13: A simple structure subjected to a harmonic loading 𝑃(𝑡) = 𝑝𝑜 sin(2𝜋𝑓𝑡̅) = 𝑝𝑜 sin(𝜔̅𝑡) 

 
In mathematic the response is the solution of the following linear nonhomogeneous differential equation: 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝑝𝑜 sin (𝜔̅𝑡) 

The solution must also satisfy the prescribed initial conditions: 𝑢(0) and 𝑢̇(0). 

 

A Quick Review of Basic Concepts: 

 

(a) Solution form :  

A general solution 𝑢(𝑡) of the linear nonhomogeneous differential equation (as shown above) is the sum 

of a general solution 𝑢ℎ(𝑡) of the corresponding homogenous differential equation and a particular 

solution 𝑢𝑝(𝑡). 

 

𝑢(𝑡) = 𝑢ℎ(𝑡) + 𝑢𝑝(𝑡) 

Where 

𝑚𝑢̈ℎ + 𝑐𝑢̇ℎ + 𝑘𝑢ℎ = 0 

And 

𝑚𝑢̈𝑝 + 𝑐𝑢̇𝑝 + 𝑘𝑢𝑝 = 𝑝𝑜 sin (𝜔̅𝑡) 

 

𝑢𝑝(𝑡) is the specific response generated by the form of external force function (In this case eternal force 

function is harmonic and 𝑢𝑝(𝑡) is also harmonic) and 𝑢𝑝(𝑡) does not need to satisfy the initial conditions. 

 

Introducing the complete general into the governing equation of motion, we obtain 

 

𝑚(𝑢ℎ(𝑡) + 𝑢𝑝(𝑡))
̈

+ 𝑐 (𝑢ℎ(𝑡) + 𝑢𝑝(𝑡))
̇

+ 𝑘 (𝑢ℎ(𝑡) + 𝑢𝑝(𝑡))

= (𝑚𝑢̈ℎ + 𝑐𝑢̇ℎ + 𝑘𝑢ℎ) + (𝑚𝑢̈𝑝 + 𝑐𝑢̇𝑝 + 𝑘𝑢𝑝) = 0 + 𝑝𝑜 sin (𝜔̅𝑡) 
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2.5.1. Undamped Systems Subjected to Harmonic Loading 

𝑚𝑢̈ + 𝑘𝑢 = 𝑝𝑜 sin (𝜔̅𝑡) 

Homogeneous (or Complementary) Solution (Undamped Systems) 

From the previous section, we have already obtained 𝑢ℎ(𝑡) as  

𝑢ℎ(𝑡) = 𝐴 cos(𝜔𝑡) + 𝐵 sin(𝜔𝑡) 

Particular Solution (Undamped Systems) 

The particular solution of a linear second-order differential equation governing the response of an 

undamped SDF system subjected to harmonic force, is of the form 

𝑢𝑝(𝑡) = 𝐺 sin(𝜔̅𝑡) 

𝑢̈𝑝(𝑡) = −𝐺𝜔
2sin (𝜔̅𝑡) 

Substituting these two values of up(t) and üp(t) into the governing equation of motion, we get 

𝑚𝑢̈𝑝 + 𝑘𝑢𝑝 = 𝑝𝑜 sin (𝜔̅𝑡) 

−𝑚𝐺𝜔2 sin(𝜔̅𝑡) + 𝑘𝐺 sin(𝜔̅𝑡) = 𝑝𝑜 sin (𝜔̅𝑡) 

Solving for G, we get 

𝐺 =
𝑝0
𝑘

1

1 − (𝜔̅/𝜔)2
 

Therefore,  

𝑢𝑝(𝑡) =
𝑝0
𝑘

1

1 − (𝜔̅/𝜔)2
 sin(𝜔̅𝑡) 

The general solution becomes,  

𝑢(𝑡) = 𝑢ℎ(𝑡) + 𝑢𝑝(𝑡) 

𝑢(𝑡) = 𝐴 cos(𝜔𝑡) + 𝐵 sin(𝜔𝑡) +
𝑝0
𝑘

1

1 − (𝜔̅/𝜔)2
 sin(𝜔̅𝑡) 

Now we have to determine A and B, 

𝑢̇(𝑡) = −𝜔𝐴 sin(𝜔𝑡) + 𝜔𝐵 cos(𝜔𝑡) +
𝑝0
𝑘

𝜔̅

1 − (𝜔̅/𝜔)2
 cos(𝜔̅𝑡) 

This yields, 

𝑢(0) = 𝐴 

𝑢̇(0) = 𝜔𝐵 +
𝑝0
𝑘

𝜔̅

1 − (𝜔̅/𝜔)2
 

Therefore, 
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𝐴 = 𝑢(0) 

𝐵 =
𝑢̇(0)

𝜔
−
𝑝0
𝑘

𝜔̅/𝜔

1 − (𝜔̅/𝜔)2
 

Let’s introduce 𝛽 = 𝜔̅/𝜔 (frequency ratio). 

The general solution becomes, 

𝑢(𝑡) = 𝑢(0) cos(𝜔𝑡) + (
𝑢̇(0)

𝜔
−
𝑝0
𝑘

𝛽

1 − 𝛽2
)  sin(𝜔𝑡) +

𝑝0
𝑘

1

1 − 𝛽2
 sin(𝜔̅𝑡) 

The first two terms show transient vibrations while the third term shows the steady-state response. 

 
(a) Harmonic force; (b) response of undamped system to harmonic force; 𝜔̅/𝜔 =  0.2, 𝑢(0) = 0.5𝑝𝑜/

𝑘, 𝑢̇(0) = 𝜔𝑝𝑜/𝑘. 

 

𝑢(𝑡) contains two distinct vibration components: (1) the 𝑠𝑖𝑛𝜔̅𝑡 term, giving an oscillation at the forcing or 

exciting frequency; and (2) the sin (𝜔𝑡) and cos (𝜔𝑡) terms, giving an oscillation at the natural frequency of 

the system. The first of these is the forced vibration or steady-state vibration, for it is present because of 

the applied force no matter what the initial conditions. The latter is the free vibration or transient vibration, 

which depends on the initial displacement and velocity. It exists even if 𝑢(0) = 𝑢(0) = 0, in which case 

the above equation specializes to 
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𝑢(𝑡) =
𝑝0
𝑘

1

1 − 𝛽2
 (sin(𝜔̅𝑡) − 𝛽sin(𝜔𝑡)) 

The transient component is shown as the difference between the solid and dashed lines in above figure 

where it is seen to continue forever. This is only an academic point because the damping inevitably 

present in real systems makes the free vibration decay with time. It is for this reason that this component 

is called transient vibration. 

The steady-state dynamic response, a sinusoidal oscillation at the forcing frequency, may be expressed 

as 

𝑢(𝑡) =
𝑝0
𝑘
(

1

1 − 𝛽2
)  sin(𝜔̅𝑡) = 𝑢𝑜

𝑠𝑡 (
1

1 − 𝛽2
)  sin(𝜔̅𝑡) 

Ignoring the dynamic effects in the governing differential equations of motion of undamped SDF system, 

the static deformation at each instant is 

𝑢𝑠𝑡(𝑡) =
𝑝0
𝑘
sin(𝜔̅𝑡) 

The maximum value of static deformation is  

𝑢𝑜
𝑠𝑡 =

𝑝𝑜
𝑘

 

which may be interpreted as the static deformation due to the amplitude po of the force; for brevity we will 

refer to ( u st ) o as the static deformation. The factor 
1

1−(ω̅/ω)2
 or 

1

1−β2
 has been plotted in figure below 

against 𝛽 = 𝜔̅/𝜔 (the ratio of the forcing frequency to the natural). For 𝛽 < 1 or 𝜔̅ < 𝜔, this factor is 

positive, indicating that 𝑢(𝑡) and 𝑝(𝑡) have the same algebraic sign (i.e., when the force acts to the right, 

the system would also be displaced to the right). The displacement is said to be in phase with the applied 

force. For 𝛽 > 1 or 𝜔̅ > 𝜔, this factor is negative, indicating that 𝑢(𝑡) and 𝑝(𝑡) have opposing algebraic 

signs (i.e., when the force acts to the right, the system would be displaced to the left). The displacement 

is said to be out of phase relative to the applied force. 
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To describe this notion of phase mathematically, the above equation for steady-state response is 

rewritten in terms of the amplitude 𝑢𝑜 of the vibratory displacement 𝑢(𝑡) and phase angle 𝜙: 

𝑢(𝑡) = 𝑢𝑜 sin(𝜔̅𝑡 − 𝜙) 

𝑢(𝑡) = 𝑢𝑜
𝑠𝑡  𝑅𝑑 sin(𝜔̅𝑡 − 𝜙) 

Where 

𝑢𝑜 = 𝑢𝑜
𝑠𝑡 (

1

1 − 𝛽2
) 

And 

𝑅𝑑 =
𝑢𝑜
𝑢𝑜
𝑠𝑡 =

1

1 − 𝛽2
 

𝜙 = 0, 𝜔̅ < 𝜔 

𝜙 = 180, 𝜔̅ > 𝜔 

For 𝜔̅ < 𝜔, 𝜙 = 0, implying that the displacement varies as sin𝜔𝑡, in phase with the applied force. For 

𝜔̅ > 𝜔, 𝜙 = 180, indicating that the displacement varies as −sin𝜔𝑡, out of phase relative to the force. 

This phase angle is shown in figure below as a function of the frequency ratio 𝛽 = 𝜔̅/𝜔. 
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Deformation response factor and phase angle for an undamped system excited by harmonic force. 

 

The deformation (or displacement) response factor 𝑅𝑑 is the ratio of the amplitude 𝑢𝑜 of the dynamic (or 

vibratory) deformation to the static deformation (𝑢𝑜
𝑠𝑡). The graph between 𝑅𝑑 and frequency ratio 𝛽 =

𝜔̅/𝜔 permits several observations:  

If 𝛽 is small (i.e., the force is “slowly varying”), 𝑅𝑑 is only slightly larger than 1 and the amplitude of the 

dynamic deformation is essentially the same as the static deformation. If 𝛽 >  √2 (i.e., 𝜔̅ is higher than 

𝜔√2), 𝑅𝑑 < 1 and the dynamic deformation amplitude is less than the static deformation. As 𝛽 increases 

beyond √2, 𝑅𝑑 becomes smaller and approaches zero as 𝜔̅/𝜔 →  ∞ , implying that the vibratory 

deformation due to a “rapidly varying” force is very small. If 𝛽 is close to 1 (i.e., 𝜔̅ is close to 𝜔), 𝑅𝑑 is 

many times larger than 1, implying that the deformation amplitude is much larger than the static 

deformation. 

The resonant frequency is defined as the forcing frequency at which 𝑅𝑑 is maximum. For an undamped 

system the resonant frequency is 𝜔 and 𝑅𝑑 is unbounded at this frequency. The vibratory deformation 

does not become unbounded immediately, however, but gradually, as we demonstrate next. 
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2.5.2. Resonant Response of Undamped Systems 

If 𝜔̅ = 𝜔, the general solution derived above is no longer valid. In this case, the choice of the function 

𝐺 sin(𝜔̅𝑡) for a particular solution fails because it is also a part of the complementary solution. The 

particular solution now is 

𝑢𝑝(𝑡) = 𝐺 𝑡 cos(𝜔𝑡) 

Substituting in governing equation of motion and solving for G, we get 

𝐺 = −
𝑝𝑜
2𝑘
𝜔 

and the complete solution is 

𝑢(𝑡) = 𝐴 cos(𝜔𝑡) + 𝐵 sin(𝜔𝑡) −
𝑝0
2𝑘
𝜔𝑡 cos(𝜔𝑡) 

Now we have to determine A and B, 

𝑢̇(𝑡) = −𝜔𝐴 sin(𝜔𝑡) + 𝜔𝐵 cos(𝜔𝑡) −
𝑝0
2𝑘
𝜔 cos(𝜔𝑡) +

𝑝0
2𝑘
𝜔2𝑡 sin(𝜔𝑡) 

This yields, 

𝐴 = 𝑢(0) 

𝐵 =
𝑢̇(0)

𝜔
+
𝑝0
2𝑘

 

The general solution becomes, 

𝑢(𝑡) = 𝑢(0) cos(𝜔𝑡) + (
𝑢̇(0)

𝜔
+
𝑝0
2𝑘
)  sin(𝜔𝑡) −

𝑝0
2𝑘
𝜔𝑡 cos(𝜔𝑡) 

For at-rest initial conditions, 𝑢(0) = 𝑢(0) = 0, the complete solution becomes, 

𝑢(𝑡) =
𝑝0
2𝑘
(sin(𝜔𝑡) − 𝜔𝑡 cos(𝜔𝑡)) 

For at-rest initial conditions, 𝑢(0) = 𝑢(0) = 0, the particular solution becomes, 

 

𝑢(𝑡) = −
𝑝0
2𝑘
𝜔𝑡 cos(𝜔𝑡) 

This result is plotted in figure below which shows that the time taken to complete one cycle of vibration is 

T. The deformation amplitude grows indefinitely, but it becomes infinite only after an infinitely long time. 
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Response of undamped system to sinusoidal force of frequency 𝜔̅ = 𝜔; 𝑢(0) = 𝑢(0) = 0 

 

This is an academic result and should be interpreted appropriately for real structures. As the deformation 

continues to increase, at some point in time the system would fail if it is brittle. On the other hand, the 

system would yield if it is ductile, its stiffness would decrease, and its “natural frequency” would no longer 

be equal to the forcing frequency, and the general solution derived for resonance case and the above 

figure would no longer be valid. 

 

2.5.3. Damped Systems Subjected to Harmonic Loading 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝑝𝑜 sin (𝜔̅𝑡) 

Homogeneous (or Complementary) Solution (Damped Systems) 

From the previous section, we have already obtained 𝑢ℎ(𝑡) as  

𝑢ℎ(𝑡) = 𝑒
−𝜉𝜔𝑡(𝐴 cos(𝜔𝐷𝑡) + 𝐵 sin(𝜔𝐷𝑡)) 

Where A and B are arbitrary constants which satisfy the initial conditions 𝑢(0) and 𝑢̇(0). The form of 

equation which we use to determine the general solution was 

𝑢ℎ(𝑡) = 𝑒
−𝜉𝜔𝑡(𝐺1𝑒

𝑖𝜔𝐷𝑡 + 𝐺2𝑒
−𝑖𝜔𝐷𝑡) 

Where 𝐺1 and 𝐺2 were determined such that they satisfy the 𝑢(0) and 𝑢̇(0). 

An alternate form is,  

𝑢ℎ(𝑡) = 𝑒
−𝜉𝜔𝑡  𝜌ℎcos(𝜔𝐷𝑡 − 𝜃ℎ) 

Where 𝜌ℎ and 𝜃ℎ are arbitrary constants determined as a function of initial conditions 𝑢(0) and 𝑢̇(0).  
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Particular Solution (Damped Systems) 

Particular solution is specific response generated by the form of external force function. Its form depends 

upon the form of dynamic loading. The specific response to the harmonic force can also be assumed 

harmonic with a phase lag. 

 
Figure 2-14: The particular solution for harmonic force is also harmonic with a phase log 

 

𝑢𝑝(𝑡) = 𝜌𝑝 sin(𝜔̅𝑡 − 𝜃𝑝) 

In which 𝜌𝑝 is amplitude and 𝜃𝑝 is phase lag. If 𝜃𝑝 = 0, there will be no lag between applied force 

𝑝(𝑡) and 𝑢𝑝(𝑡). If 𝜃𝑝 = 2𝜋, the response 𝑢𝑝(𝑡)will have a lag of one cycle with applied force 𝑝(𝑡). 

For more details about this solution form, please refer to “Advanced Engineering Mathematics” by Erwin 

Kreyszig). 

The particular solution can also be transformed into  

 𝑢𝑝(𝑡)  = 𝐺′1sin (𝜔̅𝑡) + 𝐺′2cos (𝜔̅𝑡) 

Where 𝐺′1 and 𝐺′2 are constants to be evaluated. 

 Employing the previous notations, 𝜔2 = 𝑘/𝑚 and 𝜉 = 𝑐/𝑐𝑐 = 𝑐/2𝑚𝜔, we get 

𝑚𝑢̈𝑝 + 2𝜉𝑚𝜔𝑢̇𝑝 +𝑚𝜔
2𝑢̈𝑝 = 𝑝𝑜 sin (𝜔̅𝑡) 

Substituting the general solution of 𝑢𝑝(𝑡) into above equation and separating the multiples of sin(𝜔𝑡) 

from the multiples of cos(𝜔𝑡) leads to 

 𝑢𝑝(𝑡) = 𝐺′1sin (𝜔̅𝑡) + 𝐺′2cos (𝜔̅𝑡) 

𝑢̇𝑝(𝑡) = 𝜔̅𝐺′1 cos(𝜔𝑡) − 𝜔̅𝐺′2 sin(𝜔̅𝑡) 

𝑢̈𝑝(𝑡) = −𝜔̅
2𝐺′1 sin(𝜔̅𝑡) − 𝜔̅

2𝐺′2cos (𝜔̅𝑡) 
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(−𝐺′1𝜔̅
2 − 𝐺′2𝜔̅(2𝜉𝜔) + 𝜔

2𝐺′1) sin (𝜔̅𝑡) + (−𝐺′2𝜔̅
2 + 𝐺′1𝜔̅(2𝜉𝜔) + 𝜔

2𝐺′2) cos(𝜔̅𝑡) =
𝑝𝑜
𝑚
 sin (𝜔̅𝑡) 

Hence, 

−𝐺′1𝜔̅
2 − 𝐺′2𝜔̅(2𝜉𝜔) + 𝜔

2𝐺′1 =
𝑝𝑜
𝑚

 

−𝐺′2𝜔̅
2 − 𝐺′1𝜔̅(2𝜉𝜔) + 𝜔

2𝐺′2 = 0 

Dividing the above two equations by 𝜔2 and introducing 𝛽 = 𝜔̅/𝜔 (frequency ratio), 

𝐺′1(1 − 𝛽
2) − 𝐺′2(2𝜉𝛽) =

𝑝𝑜
𝑘

 

𝐺′2(1 − 𝛽
2) + 𝐺′1(2𝜉𝛽) = 0 

These are two simultaneous algebraic equations for two unknown (𝐺′1, 𝐺′2). There simultaneous solution 

yields, 

𝐺′1 =
𝑝𝑜
𝑘

1 − 𝛽2

(1 − 𝛽2)2 + (2𝜉𝛽)2
 

𝐺′2 =
𝑝𝑜
𝑘

(−2𝜉𝛽)

(1 − 𝛽2)2 + (2𝜉𝛽)2
 

 Therefore, the particular solution 𝑢𝑝(𝑡) is obtained as 

 𝑢𝑝(𝑡) = 𝐺′1sin (𝜔̅𝑡) + 𝐺′2cos (𝜔̅𝑡) 

 𝑢𝑝(𝑡) =
𝑝𝑜
𝑘

1

(1 − 𝛽2)2 + (2𝜉𝛽)2
[(1 − 𝛽2) sin(𝜔̅𝑡) − 2𝜉𝛽cos(𝜔̅𝑡)] 

The above equation can also be written as, 

𝑢𝑝(𝑡) = 𝜌𝑝 sin (𝜔̅𝑡 − 𝜃𝑝) 

Where, 

𝜌𝑝 =
𝑝𝑜
𝑘

1

√(1 − 𝛽2)2 + (2𝜉𝛽)2
 

𝜃𝑝 = tan−1 (
2𝜉𝛽

1 − 𝛽2
 )   

General Solution (Damped Systems) 

The general solution 𝑢(𝑡) is 

𝑢(𝑡) = 𝑢ℎ(𝑡) + 𝑢𝑝(𝑡) 

𝑢(𝑡) = [𝑒−𝜉𝜔𝑡(𝐴 cos(𝜔𝐷𝑡) + 𝐵 sin(𝜔𝐷𝑡))] + [𝐺′1 sin(𝜔̅𝑡) + 𝐺′2 cos(𝜔̅𝑡)] 

Where A and B can be determined in terms of initial conditions, similar to undamped case.  
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The above equation can also be written as follows, 

𝑢(𝑡) = 𝑒−𝜉𝜔𝑡  𝜌ℎcos(𝜔𝐷𝑡 − 𝜃ℎ) + 𝜌𝑝sin (𝜔̅𝑡 − 𝜃𝑝) 

The first term [𝑒−𝜉𝜔𝑡 𝜌ℎcos(𝜔𝐷𝑡 − 𝜃ℎ)] is the free decayed oscillation at 𝜔𝐷. The 𝜌ℎ and 𝜃ℎ are defined 

such that 𝑢(0) and 𝑢̇(0) are satisfied. The oscillations of 𝑢ℎ(𝑡) are quickly damped and eventually 

become zero if the harmonic force is applied for sufficient time. 

The second term [𝜌𝑝 sin(𝜔̅𝑡 − 𝜃𝑝)] is constant amplitude oscillation at frequency 𝜔̅ with phase 𝜃𝑝 

different from excitation. This term represents the “steady-state response”. For most of the real structures, 

we are mostly interested in this response. 

 

 
Figure 2-15: The general solution of an SDF system subjected to harmonic excitation 
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Steady-state Response (Damped Systems) 

After sufficient time has passed, 𝑢(𝑡) →  𝑢𝑝(𝑡). Therefore, 𝑢𝑝(𝑡) is the “steady-state response” 

𝑢𝑝(𝑡) = 𝜌𝑝sin (𝜔̅𝑡 − 𝜃𝑝) 

Where  

𝜌𝑝 =
𝑝𝑜
𝑘

1

√(1 − 𝛽2)2 + (2𝜉𝛽)2
= 𝑢𝑜

𝑠𝑡 𝑅𝐷 

𝜃𝑝 = tan−1 (
2𝜉𝛽

1 − 𝛽2
 ) 

𝑅𝐷 =
1

√(1 − 𝛽2)2 + (2𝜉𝛽)2
 

The term 𝑝𝑜/𝑘 is the maximum static displacement (𝑢𝑜
𝑠𝑡). It is the displacement of structure that would 

occur if the maximum force 𝑝𝑜 were applied as a static force. 𝑅𝐷 is a dimensionless factor known as the 

“dynamic magnification factor” or “displacement response factor”.  

Maximum dynamic displacement (𝜌) = maximum static displacement x dynamic magnification factor 
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Steady-state response of damped systems (𝜉= 0.2) to sinusoidal force for three values of the frequency 

ratio: (a) 𝛽= 0.5, (b) 𝛽= 1, (c) 𝛽= 2. 

 

𝑅𝐷 is a function of   

a) Frequency ratio 𝛽 = 𝜔̅/𝜔 

b) Critical damping ratio 𝜉  

A plot of the amplitude of a response quantity against the excitation frequency is called a frequency-

response curve. Figure 2-16 shows the plot of 𝑅𝐷 against 𝛽 for structures with 𝜉 = 0, 0.1. 0.2, 0.5 and 1. 

Damping reduces 𝑅𝐷 and hence the deformation amplitude at all excitation frequencies. 
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Figure 2-16: The dynamic amplification factor (or response factor) for one-story structure subjected to 

harmonic force 

 

The magnitude of this reduction is strongly dependent on the excitation frequency. Several discussions 

can be made as follows: 

(1) When 𝛽 approaches to zero 𝑅𝐷1, and the dynamic displacement amplitude is about the same as 

the static one. In the other words, if the forcing frequency 𝜔̅ is much lower than the natural 

frequency of the structure, the dynamic effects are negligible. 

The displacement is controlled by the stiffness of structure, with little effect of mass and damping, so 

we call this range (𝛽  0) as “pseudo static” range. 

 

𝑢𝑜 ≅ 𝑢𝑜
𝑠𝑡 =

𝑝𝑜
𝑘

 

 

(2) On the other extreme, 𝛽 >> 1, 𝑅𝐷  0, ω̅ >> ω. If the forcing frequency (ω̅) is much higher than the 

natural frequency of the structure (𝜔), the displacement approaches to zero. In this extreme, the 

inertia forces dominate. So we call this range “inertial range”. 

This result implies that the response is controlled by the mass of the system. 
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𝑢𝑜 ≅ 𝑢𝑜
𝑠𝑡𝛽2 =

𝑝𝑜
𝑚𝜔2

 

 

(3) Between the two extremes, there is a range where the displacement can be very large when 

damping ratio is low. This is the range where 𝛽 is close to 1. At 𝛽 = 1, 𝑅𝐷  peak, i.e. a small force 

can produce a very large response. 

 

𝑅𝐷 =
1

2𝜉
 

This result implies that the response is controlled by the damping of the system. Dynamic 

magnification factor is inversely proportional to damping. In this range, the damping force plays a 

very crucial role. So, we call this range, “resonant range”. 

To give you some ideas about this “resonant amplification”, 

𝜉 of steel structures ≈  0.01,   𝑅𝐷  = 1/(2 × 0.01)  =  50 

𝜉 of concrete structures ≈  0.05,   𝑅𝐷  = 1/(2 × 0.05)  =  10 

𝜉 of tall buildings (300 m to 400 m high), long span bridges (300 m up span) =  0.005, 𝑅𝐷  =  100  

𝑢𝑜 ≅
𝑢𝑜
𝑠𝑡

2𝜉
=
𝑝𝑜
𝑐𝜔

 

 
The phase angle 𝜙, which defines the time by which the response lags behind the force, varies with 𝛽 =

𝜔̅/𝜔 as shown in Figure below. It is examined next for the same three regions of the excitation-frequency 

scale: 

1) If β = ω̅/ω ≪ 1 (i.e., the force is “slowly varying”), ϕ is close to 0∘ and the displacement is 

essentially in phase with the applied force. When the force acts to the right, the system would 

also be displaced to the right.  

2) If 𝛽 = 𝜔̅/𝜔 ≫ 1 (i.e., the force is “rapidly varying”), 𝜙 is close to 180∘ and the displacement is 

essentially of opposite phase relative to the applied force. When the force acts to the right, the 

system would be displaced to the left. 

3) If 𝛽 = 𝜔̅/𝜔 = 1  (i.e., the forcing frequency is equal to the natural frequency), 𝜙 = 90∘ for all 

values of 𝜉, and the displacement attains its peaks when the force passes through zeros. 
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Figure 2-17: The relationship between frequency ratio and phase angle 

 

Additional explanation on “pseudo-static”, “inertial” and “resonant” ranges: 

Let us consider the equation of motion.  

𝑓𝐼 + 𝑓𝐷 + 𝑓𝑠 = 𝑝𝑜 sin(𝜔𝑡)  

The left-hand side of the equation contains three structural dynamic forces. The right-hand side is an 

external force.   

The proportion of these three forces (at steady-state condition) is derived as follows.  

𝑢(𝑡) = 𝜌 sin (𝜔̅𝑡 − 𝜃) 

 

𝑢̇(𝑡) = 𝜔̅𝜌 cos (𝜔̅𝑡 − 𝜃) 

 
𝑢̈(𝑡) = −𝜔̅2𝜌 sin (𝜔̅𝑡 − 𝜃) 

𝑢(𝑡) and 𝑢̈(𝑡) are in opposite phase. 

𝑓𝑠 = 𝑘𝑢 

|𝑓𝑠|max =  𝑘𝜌 

(𝑓𝑠)𝑛  =
|𝑓𝑠|max
𝑘𝜌

 = 1 

𝑓𝐷 = 𝑐𝑢̇ 

|𝑓𝐷|max =  2𝜉𝛽𝑘𝜌 

(𝑓𝐷)𝑛  =
|𝑓𝐷|max
𝑘𝜌

= 2𝜉𝛽 
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  𝑓𝐼  = 𝑚𝑢̈ 

|𝑓𝐼|max = 𝛽
2𝑘𝜌 

(𝑓𝐼)𝑛  =
|𝑓𝑠|max
𝑘𝜌

 = 𝛽2 

 
Figure 2-18: The “pseudo-static”, “inertial” and “resonant” ranges 

 

Close to 𝛽 = 1, although both 𝑓𝑠 and 𝑓𝐼 are the major forces but they are in opposite phase, hence 

cancelling each other. The remaining 𝑓𝐷 which is relatively weak force becomes more important in this 

middle range. 

At 𝛽 = 1, the equation of motion becomes 𝑓𝐷 = 𝑝𝑜 sin(𝜔𝑡). In order to satisfy this equilibrium, large 𝜌 is 

developed  resonance. 

|𝑓𝐷|max =  2𝜉𝛽𝑘𝜌 

The term 2𝜉 is small, and 𝜌 is Large. 

 

2.5.4. Resonant Response of Damped Systems 

To gain more understanding in the nature of resonant response, let us consider the general solution 𝑢(𝑡) 

at 𝛽 = 1. 
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𝜌𝑝 =
𝑝𝑜
𝑘

1

√(1 − 𝛽2)2 + (2𝜉𝛽)2
=
𝑝𝑜
𝑘

1

2𝜉
 

𝑅𝐷 =
1

2𝜉
 

𝜌𝑝 =
𝑝𝑜
𝑘
𝑅𝐷 = 𝑢𝑜

𝑠𝑡 𝑅𝐷 =
𝑢𝑜
𝑠𝑡

2𝜉
 

Similarly, for 𝛽 = 1, 

𝜃𝑝 = tan
−1 (

2𝜉𝛽

1 − 𝛽2
 ) =

𝜋

2
 

𝑢𝑝(𝑡) =
𝑝𝑜
𝑘
 (
1

2𝜉
) sin (𝜔𝑡 −

𝜋

2
) 

Therefore, the general solution becomes, 

𝑢(𝑡) = 𝑒−𝜉𝜔𝑡  𝜌ℎ cos(𝜔𝑡 − 𝜃ℎ) +
𝑝𝑜
𝑘
 (
1

2𝜉
) sin (𝜔𝑡 −

𝜋

2
) 

sin(𝜔𝑡 −
𝜋

2
) = −cos (𝜔𝑡) 

Assume that the structure initial has no motion i.e. 𝑢(0) = 0 and 𝑢̇(0) = 0. With these specified initial 

conditions, 𝜌ℎ and 𝜃ℎ can be determined and, we finally obtain  

𝑢(𝑡) =
1

2𝜉
 
𝑝𝑜
𝑘
 (𝑒−𝜉𝜔𝑡 [cos𝜔𝐷𝑡 +

𝜉

√1 − 𝜉2
sin𝜔𝐷𝑡] − cos𝜔𝑡) 

For lightly damped systems the 𝜔𝐷 = 𝜔; thus 

𝑢(𝑡) ≅
1

2𝜉
 
𝑝𝑜
𝑘
 (𝑒−𝜉𝜔𝑡 − 1) cos𝜔𝑡 

The term 
1

2𝜉
 
𝑝𝑜

𝑘
 (𝑒−𝜉𝜔𝑡 − 1) is the envelope function. 
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Figure 2-19: The response to resonant loading 𝛽 = 1 for at-rest initial conditions. The response builds up 

gradually until the amplitude approaches the steady-state value. 

 

 
Figure 2-20: The rate of buildup of resonant response from rest.  

 

Different structures take different number of cycles to converge to large response of resonance e.g. for 𝑅𝐷 

= 10, to reach about 90% to 95% of steady-state amplitude, we need approximately 10 cycles. If 𝑅𝐷 = 20, 

the structure would require 20 cycles. So resonance just not happens immediately. If loading is comprised 

of just few cycles, the structure would not produce large dynamic amplitude. 

The term 
1

2𝜉
 
𝑝𝑜

𝑘
 (𝑒−𝜉𝜔𝑡 − 1) is the envelope function. The value (𝑒−𝜉𝜔𝑡 − 1) starts from 0 and 

approach -1 for large values of t. 
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For highly damped systems, it takes only a few cycles to reach the peak. For lowly damped systems, it 

may take large number of cycles to reach the peak.  

Therefore, in order that large resonant response to be careful develop, three conditions have to be met:  

a. Frequency Tuning, 𝛽 = 1 

b. Low damming ratio, 𝜉 ≪ 1 

c. Sufficiently long duration of excitation 

 
Figure 2-21: The examples of harmonic loading which can cause resonant response 

 

2.5.5. Dynamic Response Factors 

The steady-state response of an SDF system subjected to harmonic loading po sin (ω̅t) is shown again. 

𝑢(𝑡) = 𝜌𝑝 sin (𝜔̅𝑡 − 𝜃𝑝) 

Where  

𝜌𝑝 =
𝑝𝑜
𝑘

1

√(1 − 𝛽2)2 + (2𝜉𝛽)2
= 𝑢𝑜

𝑠𝑡 𝑅𝐷 

𝜃𝑝 = tan−1 (
2𝜉𝛽

1 − 𝛽2
 ) 

𝑅𝐷 =
𝜌𝑝

𝑢𝑜
𝑠𝑡 =

1

√(1 − 𝛽2)2 + (2𝜉𝛽)2
 

𝑢(𝑡) = 𝑢𝑜
𝑠𝑡
𝑅𝐷 sin (𝜔̅𝑡 − 𝜃𝑝) 

𝑅𝐷 is the displacement response factor. By differentiating above equation, we can also get velocity and 

acceleration response factors as follows. 

𝑅𝑉 =
𝜔̅

𝜔
𝑅𝐷 = 𝛽𝑅𝐷 

𝑅𝐴 = (
𝜔̅

𝜔
)
2

𝑅𝐷 = 𝛽
2𝑅𝐷 

𝑅𝐴  =
(
𝑓′

𝑓
)
2

√(1 − (
𝑓̅

𝑓
)
2

)

2

+ (2𝜉
𝑓̅

𝑓
)
2
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𝑅𝐴 is also a function of frequency ratio (𝑓̅/𝑓) and damping ratio (𝜉). 

Therefore, 

𝑅𝐴
𝛽
= 𝑅𝑉 = 𝛽𝑅𝐷 

A resonant frequency is defined as the forcing frequency at which the largest response amplitude occurs. 

The peaks in the frequency-response curves for displacement, velocity, and acceleration occur at slightly 

different frequencies. These resonant frequencies can be determined by setting to zero the first derivative 

of 𝑅𝐷, 𝑅𝑉, and 𝑅𝐴 with respect to 𝛽; for 𝜉 < 1/√2 they are: 

Displacement resonant frequency:  

Velocity resonant frequency: 𝜔 

Acceleration resonant frequency:  

For an undamped system the three resonant frequencies are identical and equal to the natural frequency 

ω n of the system. Intuition might suggest that the resonant frequencies for a damped system should be 

at its natural frequency 𝜔𝐷 =  𝜔√1 − 𝜉
2, but this does not happen; the difference is small, however. For 

the degree of damping usually embodied in structures, typically well below 20%, the differences among 

the three resonant frequencies and the natural frequency are small. 

The three dynamic response factors at their respective resonant frequencies are 

𝑅𝐷 =
1

2𝜉√1 − 𝜉2
= 𝑅𝐴 

𝑅𝑉 =
1

2𝜉
 

2.5.6. Response to Harmonic Ground Motion 

Harmonic ground motion is represented by 

𝑢𝑔(𝑡) = 𝑢𝑔𝑜 sin(2𝜋𝑓𝑡̅) 

 
 

Figure 2-23: The harmonic ground motion 

 

Effective Force:  
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𝑃𝑒𝑓𝑓(𝑡) =  −𝑚
𝑑2𝑢

𝑑𝑡2
=  𝑚(2𝜋𝑓)̅

2
𝑢𝑔𝑜 sin(2𝜋𝑓𝑡̅)  

Equation of motion:  

𝑚𝑑2𝑢

𝑑𝑡2
+ 𝑐

𝑑𝑢

𝑑𝑡
+ 𝑘𝑢 = 𝑃𝑒𝑓𝑓(𝑡) = 𝑚(2𝜋𝑓)̅

2
𝑢𝑔𝑜 sin(2𝜋𝑓𝑡̅)  

Response:  

 
Figure 2-24: The response to harmonic ground motion 

 

At Steady stage: 

𝑢(𝑡) = 𝑅𝐷 𝑢𝑔𝑜 sin(2𝜋𝑓𝑡̅ − 𝜙) 

𝜙 = phase lag 

𝑅𝐷 = Dynamic amplification factor 

For 𝑅𝐷 = 1, the structure will have same amplitude of shaking as the ground shaking. 

The same ground shaking is not equally harmful to all structures because they will have different natural 

frequencies and therefore, respond differently. 
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(a) (b) (c) 

Figure 2-26: The response relation between frequency ratio and dynamic response factor 

 

In (a), the structure is in-phase with ground shaking, but have low amplitude. In (b), the response of 

structure lags by a quarter-cycle to the ground shaking. In (c), the mass of structure remains at the same 

place due to high inertial force, while the ground shakes. The structural response and ground shaking are 

completely out of phase.  

 

2.5.7. Solved Examples 

 
Harmonic Response of an SDF System 

Example 5: For the same SDF system shown in Example 1 (damped case), determine the forced 

vibration response under a harmonic force defined as 𝑝𝑜 sin 𝜔̅𝑡 where 𝑝𝑜 = 1000 𝑁 and 𝜔̅ = 2𝜋𝑓.̅ 

Consider the following three cases. 

a) 𝑓̅ = 0.5 𝑓  

b) 𝑓̅ = 𝑓  
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c) 𝑓̅ = 2 𝑓  

Use at-rest initial conditions (i.e. 𝑢(0) = 0, 𝑢̇(0) = 0). Plot the response in each case and find maximum 

displacement, base shear and base moment. 

 

2.5.8. Estimation of Damping using Harmonic Tests 

The theory of forced harmonic vibration, presented in the preceding sections provides a basis to 

determine the natural frequency and damping of a structure from its measured response to a vibration 

generator. The measured damping provides data for an important structural property that cannot be 

computed from the design of the structure. The measured value of the natural frequency is the “actual” 

property of a structure against which values computed from the stiffness and mass properties of structural 

idealizations can be compared. Such research investigations have led to better procedures for developing 

structural idealizations that are representative of actual structures (Taken from Chopra (2012) Dynamics 

of Structures, 4th Edition). 

Resonance makes dynamic response much different from static response. “Resonant magnification” is 

governed by “damping”. But it is usually not easy to determine the damping 𝑐 for a given structure. In fact, 

it is a major source of error in dynamic analysis. So, the value of 𝑐 is usually assumed based on past 

experiences.  

Damping coefficient 𝑐 can be evaluated directly from experiments. One common technique is “free 

vibration decay”. It was discussed in free vibration response. 

Resonant Amplification Method  

Another technique is to estimate 𝑐 from frequency-response curve. This method of determining the 

viscous-damping ratio is based on measuring the steady-state amplitudes of relative-displacement 

response produced by separate harmonic loadings of amplitude po at discrete values of excitation 

frequency ω over a wide range including the natural frequency. Plotting these measured amplitudes 

against frequency provides a frequency-response curve of the type shown in Fig. 3-15. 

Since the peak of the frequency-response curve for a typical low damped structure is quite narrow, it is 

usually necessary to shorten the intervals of the discrete frequencies in the neighborhood of the peak in 

order to get good resolution of its shape.  

The damping ratio can then be determined from the experimental data using 

𝜉 =
1

2𝑅𝐷
 

Half-Power (Band-Width) Method 

An important property of the frequency response curve for 𝑅𝑑 shown below is the half-power bandwidth. If 

𝜔𝑎 and 𝜔𝑏 are the forcing frequencies on either side of the resonant frequency at which the amplitude 𝑢𝑜 

is 1/√2 times the resonant amplitude, then for small ξ, it can be shown that, 

𝜔𝑏 −𝜔𝑎
𝜔

= 2𝜉 

𝜉 =
𝜔𝑏 −𝜔𝑎
2𝜔
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Half power band width = 2𝜉 

This important result enables evaluation of damping from forced vibration tests without knowing the 

applied force. 

 

 
Figure 2-22: The Evaluation of damping from force vibration tests 

 

The damping can also be determined using the resonance testing. The basic idea is 

𝜉 =
1

2
 
𝑢𝑜
𝑠𝑡

𝑢𝑜(𝜔̅=𝜔)
  

 

2.5.9. Summary - Response to Harmonic Force 

Equation of Motion:  

𝑚𝑑2𝑢

𝑑𝑡2
+ 𝑐

𝑑𝑢

𝑑𝑡
+ 𝑘𝑢 = 𝑝𝑜𝑠𝑖𝑛(2𝜋𝑓𝑡̅) 

Response (at the steady state):  
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𝑢(𝑡) =
𝑝𝑜
𝑘
 𝑅𝐷 sin(2𝜋𝑓𝑡̅ − 𝜃𝑝)              

Where 
𝑝𝑜

𝑘
= static response to a static force 𝑝𝑜.  

𝜃𝑝 = Phase lag 

𝐷 = Dynamic amplification factor  

𝐷 =
1

√(1 − (
𝑓̅

𝑓
)
2

)

2

+ (2𝜉
𝑓̅

𝑓
)
2

 

 
Figure 2-25: The response relation between frequency ratio and dynamic amplification factor 

 

2.5.10. Steady-state Response to Cosine Force (𝒑𝒐𝐜𝐨𝐬𝝎̅𝒕) 

The response to cosine loading can also be found in similar manner. In this case, the coefficients of 

particular solution (G1 and G2) will be as follows. 

𝐺1 =
𝑝𝑜
𝑘

2𝜉𝛽 

(1 − 𝛽2)2 + (2𝜉𝛽)2
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𝐺2 =
𝑝𝑜
𝑘

1 − 𝛽2

(1 − 𝛽2)2 + (2𝜉𝛽)2
 

The steady-state response would be 

𝑢(𝑡) =
𝑝𝑜
𝑘
 𝑅𝐷 cos(𝜔̅𝑡 − 𝜃𝑝) = 𝑢𝑜

𝑠𝑡𝑅𝐷 cos(𝜔̅𝑡 − 𝜃𝑝) 

Where 𝑅𝐷 and 𝜃𝑝 are the same as derived for sinusoidal force. This similarity in the steady-state 

responses to the two harmonic forces is not surprising since the two excitations are the same except for a 

time shift. 

 

2.6. Response to Periodic Loading 

A periodic function is one in which the portion defined over 𝑇 repeats itself indefinitely as shown in the 

figure below. Many forces are periodic or nearly periodic. Under certain conditions, propeller forces on a 

ship, wave loading on an offshore platform, and wind forces induced by vortex shedding on tall, slender 

structures are nearly periodic. 

 
A periodic function 𝑝(𝑡) with a period 𝑇 

 

2.6.1. Fourier Series Representation of a Periodic Function 

Any arbitrary periodic functions can be represented in terms of a summation of simple sine and cosine 

functions. 

𝑝(𝑡) =  𝑎𝑜 +∑𝑎𝑛 cos(𝑛𝜔̅𝑡)

∞

𝑛=1

+∑𝑏𝑛 sin(𝑛𝜔̅𝑡)

∞

𝑛=1

 

Where 𝜔̅ = 2𝜋/𝑇. 

The right hand side of the above expression is called “Fourier series”, i.e. a periodic function can be 

separated into its harmonic components using the Fourier series. 

This concept called Fourier decomposition was first proposed by Jean-Baptiste Joseph Fourier, a French 

physicist and mathematician (1768 - 1830), lived and taught in Paris, accompanied Napoléon in the 

Egyptian War, and was later made prefect of Grenoble. The beginnings on Fourier series can be found in 

works by Euler and by Daniel Bernoulli, but it was Fourier who employed them in a systematic and 

general manner in his main work, Théorie analytique de la chaleur (Analytic Theory of Heat, Paris, 1822), 

in which he developed the theory of heat conduction (heat equation; see Sec. 12.5), making these series 
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a most important tool in applied mathematics (Erwin Kreszig, Advanced Engineering Mathematics, 10th 

Edition). 

The central starting point of Fourier analysis is Fourier series. They are infinite series designed to 

represent general periodic functions in terms of simple ones, namely, cosines and sines. This 

trigonometric system is orthogonal, allowing the computation of the coefficients of the Fourier series by 

use of the well-known Euler formulas. Fourier series are, in a certain sense, more universal than the 

familiar Taylor series in calculus because many discontinuous periodic functions that come up in 

applications can be developed in Fourier series but do not have Taylor series expansions. 

The underlying idea of the Fourier series can be extended in two important ways. We can replace the 

trigonometric system by other families of orthogonal functions, e.g., Bessel functions and obtain the 

Sturm–Liouville expansions. The second expansion is applying Fourier series to nonperiodic phenomena 

and obtaining Fourier integrals and Fourier transforms.  

In a digital age, the discrete Fourier transform plays an important role. Signals, such as voice or music, 

are sampled and analyzed for frequencies. An important algorithm, in this context, is the fast Fourier 

transform. Note that the two extensions of Fourier series are independent of each other.  

Fourier analysis allows us to model periodic phenomena which appear frequently in engineering and 

elsewhere—think of rotating parts of machines, alternating electric currents or the motion of planets. 

Related period functions may be complicated. Now, the ingenious idea of Fourier analysis is to represent 

complicated functions in terms of simple periodic functions, namely cosines and sines. The 

representations will be infinite series called Fourier series. This idea can be generalized to more general 

Fourier series and to Fourier integral (Erwin Kreszig, Advanced Engineering Mathematics, 10th Edition). 

 
Cosine and sine functions having the period 2𝜋 

 

 

If 𝑝(𝑡) is given, the coefficients 𝑎𝑛 and 𝑏𝑛 can be determined by simple integrations as follows. The 

expressions are called Euler formulas. 

∫ 𝑝(𝑡)𝑑𝑡
𝑡=𝑇

𝑡=0

= ∫ [𝑎𝑜 +∑𝑎𝑛 cos(𝑛𝜔̅𝑡)

∞

𝑛=1

+∑𝑏𝑛 sin(𝑛𝜔̅𝑡)

∞

𝑛=1

] 𝑑𝑡
𝑡=𝑇

𝑡=0

= 𝑎𝑜𝑇 

𝑎𝑜 =
1

𝑇
∫ 𝑝(𝑡)𝑑𝑡
𝑡=𝑇

𝑡=0

 

Similarly, 
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∫ 𝑝(𝑡) cos(𝑚𝜔̅𝑡) 𝑑𝑡
𝑡=𝑇

𝑡=0

= ∫ [𝑎𝑜 + ∑ 𝑎𝑚 cos(𝑚𝜔̅𝑡)

∞

𝑚=1

+ ∑ 𝑏𝑚 sin(𝑚𝜔̅𝑡)

∞

𝑚=1

] cos(𝑚𝜔̅𝑡) 𝑑𝑡
𝑡=𝑇

𝑡=0

=
𝑎𝑚𝑇

2
 

𝑎𝑚 =
2

𝑇
∫ 𝑝(𝑡) cos(𝑚𝜔̅𝑡) 𝑑𝑡
𝑡=𝑇

𝑡=0

 

Similarly, it can be shown that, 

𝑏𝑚 =
2

𝑇
∫ 𝑝(𝑡) sin(𝑚𝜔̅𝑡) 𝑑𝑡
𝑡=𝑇

𝑡=0

 

 

Orthogonal Vectors and Orthogonal Functions: 

 

𝒂 and 𝒃 are orthogonal vectors if, 𝒂. 𝒃 = 𝕠, or [𝒂]𝒕[𝒃] = 0. 

 

If 𝒂 and 𝒃 are any functions of time t, they will be orthogonal functions if,  

 

∫ 𝑎(𝑡) 𝑏(𝑡) 𝑑𝑡
𝑡=𝑇

𝑡=0

 

 

Fourier series is a series of orthogonal functions i.e. 

 

 

∫ cos(𝑛𝑥) cos(𝑚𝑥)  𝑑𝑥
𝑡=𝑇/2

𝑡=−𝑇/2

= 0,   𝑛 ≠ 𝑚 

 

∫ sin(𝑛𝑥) sin(𝑚𝑥)  𝑑𝑥
𝑡=𝑇/2

𝑡=−𝑇/2

= 0,   𝑛 ≠ 𝑚 

 

∫ sin(𝑛𝑥) cos(𝑚𝑥)  𝑑𝑥
𝑡=𝑇/2

𝑡=−𝑇/2

= 0,   𝑛 ≠ 𝑚 
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Example: 

Consider a periodic square function as shown below. 

𝑝(𝑡) = {
𝑘 𝑓𝑜𝑟 0 < 𝑡 < 𝜋
−𝑘 𝑓𝑜𝑟 𝜋 < 𝑡 < 2𝜋

} 
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A periodic square function 

 
Conducting the integrations using the above equations, we obtain, 

𝑎𝑜 = 0, 𝑎𝑛 = 0, 𝑛 = 1, 2, . 3, …  ∞ 

𝑏𝑛 =
2𝑘

𝑛𝜋
(1 − cos𝑛𝜋)   

This is,  

𝑏1 =
2𝑘

𝜋
, 𝑏2 = 0, 𝑏3 =

4𝑘

3𝜋
, 𝑏4 = 0, 𝑏5 =

4𝑘

5𝜋
,… 
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The first three partial sums of the corresponding Fourier series of the given square periodic function 

 

The series coverage quickly to the square function. 

Theoretically, an infinite number of terms are required for the Fourier series to converge to 𝑝(𝑡). In 

practice, however, a few terms are sufficient for good convergence. At a discontinuity, the Fourier series 

converges to a value that is the average of the values immediately to the left and to the right of the 

discontinuity. 

Therefore in many practical applications, it is not necessary to evaluate ∞ series. Only a finite series is 

good enough: 

 𝑝(𝑡) ≈ ∑𝑏𝑛 sin(𝑛𝜔̅𝑡)

𝑁

𝑛=1

 

When 𝑁 is large but not ∞. Since 𝑏𝑖 = 2𝑘/𝑖𝜋 for 𝑖 = 1, 3, 5, …, we can also write the function 𝑝(𝑡) as 
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𝑝(𝑡) ≈
4𝑘

𝜋
∑

1

𝑛
sin(𝑛𝜔̅𝑡)

𝑁

𝑛=1,3,5
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A periodic excitation implies that the excitation has been in existence for a long time, by which time the 

transient response associated with the initial displacement and velocity has decayed. Thus, we are 

interested in finding the steady-state response. 

Response of a periodic loading = Response to the Fourier series of the loading  

By Superposition, we can say that the response of a periodic loading = the sum of the responses to each 

sine and cosine loading in the series.  

Superposition:  

Let 𝑢1 be response to 𝑝1(𝑡) loading i.e.   

𝑚𝑢̈1 + 𝑐𝑢̇1 + 𝑘𝑢1 = 𝑝1(𝑡) 

And 𝑢2 be the response to 𝑝2(𝑡) i.e. 

𝑚𝑢̈2 + 𝑐𝑢2̇ + 𝑘𝑢2 = 𝑝2(𝑡) 

Then 𝑢1 + 𝑢2 is the response to 𝑝1(𝑡) + 𝑝2(𝑡). 

𝑚(𝑢̈1 + 𝑢̈2) + 𝑐(𝑢̇1 + 𝑢̇2) + 𝑘(𝑢1 + 𝑢2) = 𝑝1(𝑡) + 𝑝2(𝑡) 

 

2.6.2. Steady-state Response to Periodic Loading 

Consider an SDF structure is subjected to a periodic force.  

𝑝(𝑡) =  𝑎𝑜 +∑𝑎𝑛 cos(𝑛𝜔̅𝑡)

∞

𝑛=1

+∑𝑏𝑛 sin(𝑛𝜔̅𝑡)

∞

𝑛=1

 

𝑢𝑜𝑎 =
𝑎𝑜
𝑘

 

Define 𝛽𝑛 = 𝑛𝜔̅/𝜔 and use the result obtained from the previous section. 

𝑢𝑏𝑛 = steady-state response to 𝑏𝑛 sin(𝑛𝜔̅𝑡). 

𝑢𝑏𝑛(𝑡) =
𝑏𝑛
𝑘

1

(1 − 𝛽𝑛
2)
2
+ (2𝜉𝛽𝑛)

2
{(1 − 𝛽𝑛

2) sin(𝑛𝜔̅𝑡) − 2𝜉𝛽𝑛 cos(𝑛𝜔̅𝑡)} 

𝑢𝑎𝑛(𝑡) =
𝑎𝑛
𝑘

1

(1 − 𝛽𝑛
2)
2
+ (2𝜉𝛽𝑛)

2
{2𝜉𝛽𝑛 sin(𝑛𝜔̅𝑡) + (1 − 𝛽𝑛

2) cos(𝑛𝜔̅𝑡)} 

The combined response would be, 

𝑢(𝑡) =
1

𝑘
[𝑎0 +∑

1

(1 − 𝛽𝑛
2)
2
+ (2𝜉𝛽𝑛)

2
{(𝑎𝑛 2𝜉𝛽𝑛 + 𝑏𝑛(1 − 𝛽𝑛

2)) sin(𝑛𝜔̅𝑡)

∞

𝑛=1

+ (𝑎𝑛(1 − 𝛽𝑛
2) − 𝑏𝑛2𝜉𝛽𝑛) cos(𝑛𝜔̅𝑡)}] 

Example 1: 
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The steady-state response of an SDF structure subjected to the square periodic function described above 

would be 

𝑢(𝑡) =
𝑝𝑜
𝑘

4

𝜋
 ∑

1

𝑛
 

1

(1 − 𝛽𝑛
2)
2
+ (2𝜉𝛽𝑛)

2
[(1 − 𝛽𝑛

2) sin(𝑛𝜔̅𝑡) − 2𝜉𝛽𝑛cos(𝑛𝜔̅𝑡)]

𝑁

𝑛=1,3,5

 

Example 2: 

Show that 

  

 
 

Example 3: 

Response of an SDF structure with 𝜔 = 5 rad/sec when subjected to a periodic loading of triangular 

waveform (𝜔̅ = 1 rad/sec) 

Inputs:  

𝜔̅ = 1, 𝜔 = 5, 𝛽1 = 𝜔̅/𝜔 =  0.2, 𝛽3 = 3𝜔̅/𝜔 =  0.6 , 𝛽5 = 5𝜔̅/𝜔 =  1, …  

For 𝛽5 term, the response will be dominated by resonance response at frequency 5𝜔̅. 
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An example steady state response of an input triangular force 

 

Example 4: 

An SDF system with natural period T and damping ratio 𝜉 is subjected to the periodic force shown in 

Figure below with an amplitude 𝑝𝑜 and period 𝑇̅. 

a) Expand the forcing function in its Fourier series. 

b) Determine the steady-state response of an undamped system. 

c) For 𝑇̅/𝑇 = 2, determine and plot the response to individual terms in the Fourier series. How many 

terms are necessary to obtain reasonable convergence of the series solution? 

 
 

 

Example 5: 

An SDF system with mass 𝑚 =  2000 𝐾𝑔, stiffness 𝑘 =  800000 𝑁/𝑚 and damping ratio 𝜉 = 0.027 is 

subjected to the periodic force shown in Figure below. 
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Compute, plot and discuss the steady-state response and compare with previous example with harmonic 

loading. 𝜔̅ = 2𝜋𝑓̅ = 2𝜋/𝑇. Consider the same three cases. 

a) 𝑓̅ = 0.5 𝑓 

b) 𝑓̅ = 𝑓  

c) 𝑓̅ = 2 𝑓  

Where 𝑓 is the natural frequency of the structure. Use at-rest initial conditions (i.e. 𝑢(0) = 0, 𝑢̇(0) = 0). 

Plot the response in each case and find maximum displacement, base shear and base moment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T
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Fourier series of some periodic functions 

 

Function: 

 

𝑓(𝑥) = {
𝑎 𝑓𝑜𝑟 0 < 𝑥 < 𝜋
−𝑎 𝑓𝑜𝑟 − 𝜋 < 𝑥 < 0

 

 
 

Fourier series: 

 

𝑓(𝑥) =
4𝑎

𝜋
(
sin 𝑥

1
+
sin 3𝑥

3
+
sin 5𝑥

5
+⋯) 

 

 

 

Function: 

 

𝑓(𝑥) = {
𝑎 𝑓𝑜𝑟 𝑑 < 𝑥 < 𝜋 − 𝑑
−𝑎 𝑓𝑜𝑟 𝜋 + 𝑑 < 𝑥 < 2𝜋 − 𝑑

 

 
 

Fourier series: 

 

𝑓(𝑥) =
4𝑎

𝜋
(cos 𝑑 sin 𝑥 +

1

3
cos 3𝑑 sin 3𝑥 +

1

5
cos 5𝑑 sin 5𝑥 +⋯) 

 

 
 

Function: 

 

𝑓(𝑥) = {
𝑎 𝑓𝑜𝑟 𝑑 < 𝑥 < 2𝜋 − 𝑑
0 𝑓𝑜𝑟 0 < 𝑥 < 𝑑 𝑎𝑛𝑑 2𝜋 − 𝑑 < 𝑥 < 2𝜋

 

 
 

Fourier series: 

 

𝑓(𝑥) =
2𝑎

𝜋
(
𝜋 − 𝑑

2
−
sin(𝜋 − 𝑑)

1
cos 𝑥 +

sin 2(𝜋 − 𝑑)

2
cos 2𝑥 −

sin 3(𝜋 − 𝑑)

3
+⋯) 
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Function: 

 

𝑓(𝑥) = {

2𝑎𝑥

𝜋
𝑓𝑜𝑟 −

𝜋

2
≤ 𝑥 ≤

𝜋

2
2𝑎(𝜋 − 𝑥)

𝜋
𝑓𝑜𝑟 

𝜋

2
≤ 𝑥 ≤

3𝜋

2

 

 
 

Fourier series: 

 

𝑓(𝑥) =
8𝑎

𝜋2
(
sin 𝑥

1
−
sin 3𝑥

32
+
sin 5𝑥

52
−⋯) 

 

 

 

Function: 

 

𝑓(𝑥) = {

𝑎𝑥

𝜋
𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝜋

𝑎(2𝜋 − 𝑥)

𝜋
𝑓𝑜𝑟 𝜋 ≤ 𝑥 ≤ 2𝜋

 

 
 

Fourier series: 

 

𝑓(𝑥) =
𝑎

2
−
4𝑎

𝜋2
(
cos 𝑥

1
+
cos 3𝑥

32
+
cos5𝑥

52
+⋯) 

 

 

 

Function: 

 

𝑓(𝑥) = {
𝑎𝑥

𝜋
𝑓𝑜𝑟 − 𝜋 < 𝑥 < 𝜋 

 
 

Fourier series: 

 

𝑓(𝑥) =
2𝑎

𝜋
(
sin 𝑥

1
−
sin 2𝑥

2
+
sin 3𝑥

3
−⋯) 
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Function: 

 

𝑓(𝑥) = {

𝑎𝑥

𝜋
𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝜋

0 𝑓𝑜𝑟 𝜋 ≤ 𝑥 ≤ 2𝜋
 

 
 

Fourier series: 

 

𝑓(𝑥) =
𝑎

4
−
2𝑎

𝜋2
(
cos 𝑥

1
+
cos 3𝑥

32
+
cos 5𝑥

52
+⋯) +

𝑎

𝜋
(
sin 𝑥

1
−
sin 2𝑥

2
+
sin 3𝑥

3
−⋯) 

 

 

 

Function: 

 

𝑓(𝑥) = {
𝑎𝑥

2𝜋
𝑓𝑜𝑟 0 < 𝑥 < 2𝜋 

 
 

Fourier series: 

 

𝑓(𝑥) =
𝑎

2
−
𝑎

𝜋
(
sin 𝑥

1
+
sin 2𝑥

2
+
sin 3𝑥

3
+⋯) 

 

 

 

Function: 

 

𝑓(𝑥) =

{
 
 

 
 

𝑎𝑥

𝑑
−𝑏 ≤ 𝑥 ≤ 𝑏

𝑎 𝑏 ≤ 𝑥 ≤ 𝜋 − 𝑏
𝑎(𝜋 − 𝑥)

𝑑
𝑓𝑜𝑟 𝜋 − 𝑏 < 𝑥 ≤ 𝜋 + 𝑏

−𝑎 𝑓𝑜𝑟 𝜋 + 𝑏 < 𝑥 ≤ 2𝜋 − 𝑏

 

 
 

Fourier series: 

 

𝑓(𝑥) = ? 
 

Find yourself 
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Function: 

 

𝑓(𝑥) = {
𝑎 sin 𝑥 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝜋
0 𝑓𝑜𝑟 𝜋 ≤ 𝑥 ≤ 2𝜋

 

 
 

Fourier series: 

 

𝑓(𝑥) =
2𝑎

𝜋
(
1

2
+
𝜋 sin 𝑥

4
−
cos 2𝑥

1 × 3
−
cos 4𝑥

3 × 5
−
cos 6𝑥

5 × 7
−⋯) 

 

 

 

Function: 

 

𝑓(𝑥) = {
𝑎 cos 𝑥 𝑓𝑜𝑟 0 < 𝑥 < 𝜋
−𝑎 cos 𝑥 𝑓𝑜𝑟 − 𝜋 < 𝑥 < 0

 

 
 

Fourier series: 

 

𝑓(𝑥) =
8𝑎

𝜋
(
sin 2𝑥

1 × 3
+
2 sin 4𝑥

3 × 5
+
3 sin 6𝑥

5 × 7
+⋯) 

 

 

 

Function: 

 

𝑓(𝑥) = {𝑥2 𝑓𝑜𝑟 − 𝜋 ≤ 𝑥 ≤ 𝜋 

 
 

Fourier series: 

 

𝑓(𝑥) =
𝜋2

3
− 4 (

cos 𝑥

1
−
cos 2𝑥

22
+
cos3𝑥

32
−⋯) 
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Function: 

 

𝑓(𝑥) = {𝑎|sin 𝑥| 𝑓𝑜𝑟 − 𝜋 < 𝑥 < 𝜋 

 
 

Fourier series: 

 

𝑓(𝑥) =
2𝑎

𝜋
−
4𝑎

𝜋
(
cos 2𝑥

1 × 3
+
cos 4𝑥

3 × 5
+
cos 6𝑥

5 × 7
+⋯) 

 

 

 
  

2.7. Solved Examples: Response of SDF Systems to Harmonic 

and Period Loading 

 

Example 1: The SDF structure in Figure below is excited by a lateral dynamic force 𝑃(𝑡). The mass of 

the structure (𝑚) is 4000 𝑘𝑔. The lateral stiffness of the structure (𝑘) is 2 × 106 𝑁/𝑚. The critical damping 
ratio (𝜉) of the structure is 0.03.  

 

 

The force-time history of the dynamic force 𝑃(𝑡) is shown in Figure below. 
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Assuming that the structural response to 𝑃(𝑡) has already reached the steady state condition, determine 
the maximum lateral displacement of the SDF structure. 
 

Note: The dynamic force 𝑃(𝑡) = 𝑃𝑜(2 − cos(2𝜋𝑡/𝑇𝑓) in the above figure can be treated as a superposition 

of a static force 2𝑃𝑜 and a harmonic force 𝑃𝑜cos(2𝜋𝑡/𝑇𝑓) 

 
Solution: 
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Example 2: For the same case of example 1, Now, suppose that it is necessary to reduce the maximum 
lateral displacement under this dynamic loading to approximately one-third of the above value, and there 
are two schemes to be considered for this purpose: 

 

Scheme 1: The first scheme is to increase the lateral stiffness of the structure. This can be done by 
stiffening the columns. However, due to some practical limitations, the maximum stiffness, after the 

stiffening process, will not be higher than 1.2𝑘, where 𝑘 is the original stiffness. 

Scheme 2: The second scheme is to increase the structural mass. This can be done by attaching an 
additional mass on top of the structure. Again, this scheme has a limitation. The additional mass must not 
be greater than 1000 kg. 

 

Which scheme will you choose? Why? 

If you choose the first scheme, what is the minimum additional lateral stiffness of the structure required to 
achieve the target reduced response? If you choose the second scheme, what is the minimum additional 
mass required to achieve the target reduced response? 
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Solution: 
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Part 1 - Structural Dynamics – The Basics 

Dynamics of Single-Degree-of-Freedom (SDF) Systems  108 

 

 
 

 

Example 3: The structure shown in Figure below is composed of a rigid slab and two supporting steel 

columns. Each of these columns has a hollow circular section with external diameter of 0.300 m and 

internal diameter of 0.276 m. The connections between the top slab and the supporting columns are 

hinge supports, while the connections between the columns and the rigid floor are fixed end type. 

Important structural properties and dimensions are presented in Figure. The critical damping ratio of this 

structure is 0.03. 

 

Compute the natural frequency of this structure. Note that the mass of the columns is very small when 

compared with the mass of the platforms, so the effects of column mass can be neglected. 

 

Suppose that the structure is subjected to a lateral periodic ground displacement 𝑢𝑔(𝑡) shown in Figure. 
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A rigid slab supported by two steel columns 

 
Before the application of this ground displacement, the structure is at rest i.e. it has no initial displacement 

or motion. The response of interest for this loading case is the steady state response. 

Find the maximum lateral displacement of the rigid slab relative to the ground. 

Find the maximum shear force in each column. 

 

Find the maximum bending stress in each column. 

Note that it is not necessary to compute the “exact” values of these responses. Approximate values with a 

reasonable accuracy (say, within 5% error) are good enough. 
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Harmonic ground motion at the base of system 
 
Now, suppose that the maximum displacement and bending stress in this loading case are too high, and 

it is necessary to reduce these maximum responses by at least 30%. Two schemes to reduce the 

responses are proposed: 

 

Scheme A: Add rigid mass of 30,000 kg to the top rigid slab as shown by Figure. The added mass is 

firmly locked to the slab. By this scheme, it may be assumed that the critical clamping ratio remains 

unchanged (equal to 0.03). 

 

Scheme B: Replace the supporting columns by two new steel columns as shown by Figure. The cross-

sectional properties of new columns are identical to the original ones [external diameter of 0.300 m and 

internal diameter of 0.276 in]. The connections between columns and rigid slab and rigid floor are fixed 
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end type. By this scheme, it may be assumed that the critical damping ratio remains unchanged (equal to 

0.03). 

 

Determine the effectiveness of each of these two schemes. 

Which scheme should be adopted? 

What are the maximum displacement responses under the adopted scheme? 

 

  
Scheme A Scheme B 

 

Proposed schemes to reduce the maximum responses  

 

Solution: 
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Example 4: A single story building shown in Figure below is subjected to a lateral periodic force 𝐹(𝑡). The 

building top mass (𝑚) is 13,000 Kg. The combined lateral stiffness of supporting columns (𝑘) is 6 ×

106 𝑁/𝑚. The critical damping ratio of the building is 0.01. 

 

 
Assuming that the response has already reached the steady-state condition, find the maximum lateral 
displacement of the building.  
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Note: The dynamic force 𝐹(𝑡) in the above figure can be treated as a superposition of a static force of 

10,000 N and a square periodic force function 𝑓(𝑥) as shown below (𝑥 = 𝜔̅𝑡). 
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Solution: 
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2.8. Response to Impulse Loading 

 

Impulsive Shock loads, short duration loads. 

Impact, blast wave, explosion  

truck/auto mobiles/travelling cranes  

The study of impulse response is also important for the analysis of response to arbitrary loadings.  
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Impulse force: magnitude = 𝑝𝑜, start at 𝑡 = 0 

Duration = Δ𝑡, where Δ𝑡/𝑇 << 1  

Structure:  initial at-rest 𝑢(0) = 0, 𝑢̇(0) = 0 

Phase 1: 

The particular to a step loading is simply a static deflection: 

𝑢𝑝(𝑡) = 𝑝𝑜/𝑘  

 
 

This solution satisfies the equation of equilibrium. 

𝑢̇𝑝(𝑡) = 0 
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𝑢̈𝑝(𝑡) = 0 

Putting in equation of motion, 

0 + 0 + 𝑘
𝑝0
𝑘
= 𝑝0 

A general solution 

𝑢(𝑡) = 𝑢𝑝(𝑡)  + 𝑢ℎ(𝑡)  

𝑢(𝑡) =
𝑝𝑜
𝑘
+ 𝑒−𝜉𝜔𝑡[𝐴 sin(𝜔𝐷𝑡) + 𝐵 cos(𝜔𝐷𝑡)]  

Where  

A and B are determined such that at-rest initial conditions are satisfied. 

𝑢(0) =
𝑝𝑜
𝑘
+ 𝐵 = 0 

𝐵 = −
𝑝𝑜
𝑘

 

𝑢̇(0) = 𝜔𝐷𝐴 − 𝜉𝜔𝐵 = 0 

𝐴 =
𝜉𝜔𝐵

𝜔𝐷
 

So we obtain (in the range 0 < 𝑡 < Δ𝑡) 

 

𝑢(𝑡) =
𝑝𝑜
𝑘
+ 𝑒−𝜉𝜔𝑡 [−

𝜉𝜔𝐵

𝜔𝐷

𝑝𝑜
𝑘
sin(𝜔𝐷𝑡) −

𝑝𝑜
𝑘
cos(𝜔𝐷𝑡)]  

 

Next, due to fact that Δ𝑡/𝑇 << 1 and 𝜉 << 1  

𝑢(𝑡) ≈
𝑝𝑜
𝑘
−
𝑝𝑜
𝑘
cos(𝜔𝑡) ≈  

𝑝𝑜
𝑘
(1 − cos(𝜔𝑡)) 

Phase 2: 
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𝑢(𝑡) =
𝑝𝑜
𝑘
(1 − cos(𝜔𝑡)), 𝑢(Δ𝑡) =

𝑝𝑜
𝑘
(1 − cos(𝜔Δ𝑡)) 

𝑢̇(𝑡) =
𝑝𝑜
𝑘
(𝜔 sin(𝜔𝑡)), 𝑢̇(Δ𝑡) =

𝑝𝑜
𝑘
(sin(𝜔Δ𝑡)) 

Employing Tylor’s expansion: 

sin 𝜃 = 𝜃 −
𝜃3

3!
+
𝜃5

5!
…… 

cos 𝜃 = 1 −
𝜃2

2!
+
𝜃4

4!
…… 

For small 𝜃, by neglecting the second order term and higher terms, we get 

sin 𝜃 ≈ 𝜃, cos 𝜃 ≈ 1     

Introducing this approximation in above equations, we obtain 

𝑢(𝑡) = 0 

𝑢̇(𝑡) ≅
𝑝𝑜𝜔

2∆𝑡

𝑘
=
𝑝𝑜∆𝑡

𝑚
 

𝑝𝑜∆𝑡 is an impulse.  

The above equation says that impulse ≈ the change in momentum (of the mass) 

The impulse introduces “momentum” into a structure but the duration of impulse is so short that the 

displacement has not been developed yet. 

Using the above two equations as the initial conditions for free vibration in Phase 2, 

𝑢(𝑡) = 𝑒−𝜉𝜔𝑡 [
𝑢̇(Δ𝑡)

𝜔𝐷
 sin𝜔𝐷(𝑡 − ∆𝑡)] 

Since ∆𝑡/𝑡 << 1 it is justified to let 𝑡 − ∆𝑡 ≈ 𝑡 that is  

𝑢(𝑡) = 𝑒−𝜉𝜔𝑡
𝑝𝑜Δ𝑡

𝑚𝜔𝐷
 sin(𝜔𝐷𝑡) 

The above equation will be used when we analyze the response to arbitrary loading in the next section. 
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2.9. Solved Examples: Response to Impulse Loading 

Question 1: The structure in the following Figure is composed of a top lumped mass, a supporting steel 
column, and a lateral coil spring. The column has a hollow square section as shown in the Figure. The 
mass, stiffness of the coil spring, and other important structural properties, as well as key dimensions, are 
all presented in Figure. The critical damping ratio of the structure is 0.03.  
(a) Find the natural frequency and natural period of this structure. 

 

Suppose that the structure is subjected to a lateral force F(t). The time history of 𝐹(𝑡) is shown in the 
following Figure. 
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Before it was subjected to the excitation, the structure was in the rest condition. 

(b) Find the maximum lateral displacement of the top mass.  

(c) Find the maximum bending moment and shear at the column base.  

(d) Find the maximum stress in the column. 

(e) Find the maximum force in the coil spring. 
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Part 1 - Structural Dynamics – The Basics 

Dynamics of Single-Degree-of-Freedom (SDF) Systems  125 

 

 



Part 1 - Structural Dynamics – The Basics 

Dynamics of Single-Degree-of-Freedom (SDF) Systems  126 
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2.10. Response to General Dynamic Loading 

 

2.10.1. Duhamel’s Integral (Convolution Integral) 

 

 
 

 A general dynamic, loading = A series of short Impulses  

 Each impulse produce its own response  

 The sum of these responses = the response to the dynamic loading 

 

A force 𝑝(𝑡) varying arbitrarily with time can be represented as a sequence of infinitesimally short 

impulses.  
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Let 𝑑𝑢(𝑡; 𝜏) is the response of a linear dynamic system at time 𝑡 due to impulse 𝑝(𝜏)𝑑𝜏 at time 𝜏. 

𝑑𝑢(𝑡; 𝜏) =  𝑝(𝜏)𝑑𝜏 ℎ(𝑡 − 𝜏) 

Where 

 ℎ(𝑡 − 𝜏) = {
𝑒−𝜉𝜔(𝑡−𝜏)

𝑚𝜔𝐷
 sin𝜔𝐷(𝑡 − 𝜏) , 𝑡 > 𝜏

0, 𝑡 ≤ 𝜏

 

 

ℎ(𝑡 − 𝜏) = unit impulse response (or response to unit impulse applied at 𝑡 = 𝜏). 
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By means of superposition the total responsive 𝑢(𝑡) can be obtained by summing all impulse responses 

developed during the loading history. 

𝑢(𝑡) = ∫𝑝(𝜏) ℎ(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

The integration is called “Convolution Integral” in general theory of mathematics. 

Putting the unit impulse response yields the “Duhamel Integral” in structural dynamics. 

𝑢(𝑡) =
1

𝑚𝜔𝐷
∫𝑝(𝜏) 𝑒−𝜉𝜔(𝑡−𝜏)  sin𝜔𝐷(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

For an undamped system, Duhamel integral becomes, 

𝑢(𝑡) =
1

𝑚𝜔𝐷
∫𝑝(𝜏) sin𝜔𝐷(𝑡 − 𝜏) 𝑑𝜏

𝑡

0

 

In above equation, it is assumed that the structure is initially at-rest condition i.e. 𝑢(0) = 0,  𝑢̇(0) = 0. 

For other cases, additional free vibration response must be added to the solution. 

𝑢(𝑡) = 𝑒−𝜉𝜔𝑡 [
𝑢̇(0) + 𝑢(0) 𝜉𝜔

𝜔𝐷
sin𝜔𝐷𝑡 + 𝑢(0) cos𝜔𝐷𝑡] + ∫𝑝(𝜏) ℎ(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

In the following investigation, the initial at-rest condition is assumed. 

Duhamel’s integral provides a general result for evaluating the response of a linear SDF system to 

arbitrary force. This result is restricted to linear systems because it is based on the principle of 

superposition. Thus it does not apply to structures deforming beyond their linearly elastic limit. If 𝑝(𝜏) is a 

simple function, closed-form evaluation of the integral is possible and Duhamel’s integral is an alternative 

to the classical method for solving differential equations. If 𝑝(𝜏) is a complicated function that is described 

numerically, evaluation of the integral requires numerical methods.  

Using the trigonometric identity, the integral equation of response (at-rest initial condition) can be 

expanded to the following. 

sin(𝜔𝐷𝑡 − 𝜔𝐷𝜏) = sin(𝜔𝐷𝑡) cos(𝜔𝐷𝜏) − cos(𝜔𝐷𝑡) sin(𝜔𝐷𝜏) 

𝑢(𝑡) =
1

𝑚𝜔𝐷
∫𝑝(𝜏) 𝑒−𝜉𝜔(𝑡−𝜏) [sin(𝜔𝐷𝑡) cos(𝜔𝐷𝜏) − cos(𝜔𝐷𝑡) − sin(𝜔𝐷𝜏)]𝑑𝜏

𝑡

0

 

𝑢(𝑡) = [
1

𝑚𝜔𝐷
∫𝑝(𝜏) 𝑒−𝜉𝜔(𝑡−𝜏) cos(𝜔𝐷𝜏) 𝑑𝜏

𝑡

0

] sin(𝜔𝐷𝑡) − [
1

𝑚𝜔𝐷
∫𝑝(𝜏) 𝑒−𝜉𝜔(𝑡−𝜏) sin(𝜔𝐷𝜏) 𝑑𝜏

𝑡

0

] cos(𝜔𝐷𝜏) 

𝑢(𝑡) = 𝐴(𝑡) sin𝜔𝐷𝑡 − 𝐵(𝑡) cos𝜔𝐷𝑡 

Where  
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𝐴(𝑡) =
1

𝑚𝜔𝐷
(∫ 𝑝(𝜏)

𝑡

0

 
𝑒𝜉𝜔𝜏

𝑒𝜉𝜔𝑡
 cos𝜔𝐷𝜏 𝑑𝜏) 

𝐵(𝑡) =
1

𝑚𝜔𝐷
(∫ 𝑝(𝑡)

𝑡

0

 
𝑒𝜉𝜔𝜏

𝑒𝜉𝜔𝑡
 sin𝜔𝐷𝜏 𝑑𝜏) 

 
For undamped case, 

𝐴(𝑡) =
1

𝑚𝜔
(∫ 𝑝(𝜏)

𝑡

0

cos𝜔𝜏 𝑑𝜏) 

𝐵(𝑡) =
1

𝑚𝜔
(∫ 𝑝(𝑡)

𝑡

0

sin𝜔𝜏 𝑑𝜏) 

 

The terms in brackets in above equations need numerical integration. 

 

Simple Summation, 

 

∫ 𝑓(𝜏)𝑑
𝑡

0

𝜏 ≅ Δ𝜏 (𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 +⋯𝑓𝑁−1) 

 

Where 𝑓𝑖 = 𝑓(𝑖, Δ𝜏), Δ𝜏 = 𝑡/𝑁 

 
  

Or by Trapezoidal rule, 

 

∫ 𝑓(𝜏)𝑑
𝑡

0

𝜏 ≅
Δ𝜏

2
 (𝑓0 + 2𝑓1 + 2𝑓2 + 2𝑓3

+⋯2𝑓𝑁−1 + 𝑓𝑁) 

 

Where 𝑓𝑖 = 𝑓(𝑖, Δ𝜏), Δ𝜏 = 𝑡/𝑁 

 
 

Consider first the numerical integration of 𝑦(𝜏) = 𝑝(𝜏) cos𝜔𝜏  as required to find 𝐴(𝑡). For convenience of 

numerical calculation, the function 𝑦(𝜏) is evaluated at equal time increments Δ𝜏 as shown in Figure 

below, with the successive ordinates being identified by appropriate subscripts. The integral 𝐴𝑁 can now 

be obtained approximately by summing these ordinates, after multiplying by weighting actors that depend 

on the numerical integration scheme being used as follows: 
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Formulation of numerical summation process for Duhamel integral 

 

Simple summation: 

𝐴𝑁 =
Δ𝜏

𝑚𝜔
[𝑦0 + 𝑦1 + 𝑦2 +⋯+ 𝑦𝑁−1] 

Trapezoidal rule: 

𝐴𝑁 =
Δ𝜏

2𝑚𝜔
[𝑦0 + 2𝑦1 + 2𝑦2 +⋯+ 2𝑦𝑁−1 + 𝑦𝑁] 

Simpson’s rule: 

𝐴𝑁 =
Δ𝜏

3𝑚𝜔
[𝑦0 + 4𝑦1 + 2𝑦2 +⋯+ 4𝑦𝑁−1 + 𝑦𝑁] 

Using any one of these equations, A N can be obtained directly for any specific value of N indicated. 

However, usually the entire time-history of response is required so that one must evaluate 𝐴𝑁 for 

successive values of 𝑁 until the desired time-history of response is obtained. For this purpose, it is more 

efficient to use these equations in their recursive forms: 

Simple summation: 

𝐴𝑁 = 𝐴𝑁−1 +
Δ𝜏

𝑚𝜔
[𝑦𝑁−1],   𝑁 = 1, 2, 3, …  

Trapezoidal rule: 

𝐴𝑁 = 𝐴𝑁−1 +
Δ𝜏

2𝑚𝜔
[𝑦𝑁−1 + 𝑦𝑁],   𝑁 = 1, 2, 3, …  

Simpson’s rule: 

𝐴𝑁 = 𝐴𝑁−1 +
Δ𝜏

3𝑚𝜔
[𝑦𝑁−2 + 4𝑦𝑁−1 + 𝑦𝑁],   𝑁 = 2, 4, 6, …  
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Evaluation of 𝐵(𝑡) in can be carried out in the same manner, leading to expressions for 𝐵𝑁 having exactly 

the same forms shown by above equation; however, in doing so, the definition of 𝑦(𝜏) must be changed 

to 𝑦(𝜏) = 𝑝(𝜏) sin𝜔𝜏 consistent with the equation. Having calculated the values of 𝐴𝑁 and 𝐵𝑁 for 

successive values of 𝑁, the corresponding values of response 𝑢𝑁 are obtained using 

𝑢𝑁 = 𝐴𝑁 sin𝜔𝑡𝑁 − 𝐵𝑁 cos𝜔𝑡𝑁 

For critically damped systems, 

Simple summation: 

𝐴𝑁 = 𝑒
−𝜉𝜔Δ𝜏𝐴𝑁−1 +

Δ𝜏

𝑚𝜔𝐷
[𝑦𝑁−1]𝑒

−𝜉𝜔Δ𝜏,   𝑁 = 1, 2, 3, …  

Trapezoidal rule: 

𝐴𝑁 = 𝑒
−𝜉𝜔Δ𝜏𝐴𝑁−1 +

Δ𝜏

2𝑚𝜔𝐷
[𝑦𝑁−1𝑒

−𝜉𝜔Δ𝜏 + 𝑦𝑁],   𝑁 = 1, 2, 3, …  

Simpson’s rule: 

𝐴𝑁 = 𝑒
−2𝜉𝜔Δ𝜏𝐴𝑁−1 +

Δ𝜏

3𝑚𝜔𝐷
[𝑦𝑁−2𝑒

−2𝜉𝜔Δ𝜏 + 4𝑦𝑁−1𝑒
−𝜉𝜔Δ𝜏 + 𝑦𝑁],   𝑁 = 2, 4, 6, …  

The expressions for 𝐵𝑁 are identical in form to those given for 𝐴𝑁. Having calculated the values of 𝐴𝑁 and 

𝐵𝑁 for successive values of N, the corresponding ordinates of response are obtained using 

𝑢𝑁 = 𝐴𝑁 sin𝜔𝐷𝑡𝑁 − 𝐵𝑁 cos𝜔𝐷𝑡𝑁 

The accuracy to be expected from any of the above numerical procedures depends, of course, on the 

duration of time interval Δ𝜏. In general, this duration must be selected short enough for both the load and 

the trigonometric functions used in the analysis to be well defined, and further, to provide the normal 

engineering accuracy, it should also satisfy the condition Δ𝜏 ≤  𝑇/10. Clearly the accuracy and 

computational effort increase with the complexity of the numerical integration procedure. 

The concept of convolution integral will be used again later when we study the response of structures to 

random loadings from statistical view point (random vibration theory). 

Note: The Convolution Integral is derived based on the principle of superposition. So, it is applicable only 

for the response analysis of “linear systems”. 
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2.10.2. Step-by-step Numerical Integration Procedures (Time-stepping methods) 

 General Dynamic loadings 

 Nonlinear Structures 

In some important structural dynamic problems, the responses of structures are in nonlinear range. For 

example, the response of structures subjected to a major earthquake. 

 
 

 

For nonlinear analysis, Duhamel integral is not applicable. For such cases, we have “step-by- step direct 

integration procedures”. 

Consider the dynamic equilibrium of a nonlinear structure at time t: 

𝑓𝐼(𝑡) + 𝑓𝐷(𝑡) + 𝑓𝑠(𝑡) = 𝑝(𝑡) 

Where 

𝑓𝐼(𝑡) = 𝑚𝑢̈(𝑡) 

𝑓𝐷(𝑢̇) ≠ 𝑐𝑢̇(𝑡) 

Damping force is a nonlinear function of velocity. 

𝑓𝑠(𝑢) ≠ 𝑘𝑢(𝑡) 

Restoring force is a nonlinear function of displacement. 

At a same time Δ𝑡 later: 

𝑓𝐼(𝑡 + Δ𝑡) + 𝑓𝐷(𝑡 + Δ𝑡) + 𝑓𝑠(𝑡 + Δ𝑡) = 𝑝(𝑡 + Δ𝑡) 

Subtracting the original equation from this equation will yield the incremental form of differential equation 

of motion, as follows. 
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Δ𝑓𝐼(𝑡) + Δ𝑓𝐷(𝑡) + Δ𝑓𝑠(𝑡) = Δ𝑝(𝑡 

Where   

Δ𝑓𝐼(𝑡) = 𝑓𝐼(𝑡 + Δ𝑡) − 𝑓𝐼(𝑡) = 𝑚 Δ𝑢̈(𝑡) 

Δ𝑓𝐷(𝑡) = 𝑓𝐷(𝑡 + Δ𝑡) − 𝑓𝐷(𝑡) ≈ (
𝑑𝑓𝐷
𝑑𝑢̇

)
𝑡
Δ𝑢̇ = 𝑐(𝑡)Δ𝑢̇ 

Δ𝑓𝑠(𝑡) = 𝑓𝑠(𝑡 + Δ𝑡) − 𝑓𝑠(𝑡) ≈ (
𝑑𝑓𝑠
𝑑𝑢̇
)
𝑡
Δ𝑢 = 𝑘(𝑡)Δ𝑢 

The later two equations are approximate. They can be used only if the change Δ𝑢̇ and Δ𝑢 are very small. 

We have introduced the following two approximations. 

Δ𝑓𝐷(𝑡) = 𝑐(𝑡)Δ𝑢̇ 

Δ𝑓𝑠(𝑡) = 𝑘(𝑡) Δ𝑢 

They are equivalent to the assumption that the damping force and restoring force are linear within 𝑡 and 

𝑡 + Δ𝑡. 

 

 

 

The incremental equation of motion becomes, 

𝑚 Δ𝑢̈(𝑡) + 𝑐(𝑡)Δ𝑢̇ + 𝑘(𝑡)Δ𝑢 = Δ𝑝(𝑡) 

Stepping from time 𝑡 to 𝑡 + 𝛥𝑡 is usually not an exact procedure. Many approximate procedures are 

possible that are implemented numerically. The three important requirements for a numerical procedure 

are (1) convergence—as the time step decreases, the numerical solution should approach the exact 

solution, (2) stability—the numerical solution should be stable in the presence of numerical round-off 

errors, and (3) accuracy—the numerical procedure should provide results that are close enough to the 

exact solution. 

There are three common types of time-stepping procedures. 

1) Methods based on interpolation of the excitation function 

2) Methods based on finite difference expressions of velocity and acceleration (e.g. Central 

Difference Method), and 

3) Methods based on assumed variation of acceleration (e.g. Newmark’s Average Acceleration 

Method and Newmark’s Linear Acceleration Method).  
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Here we will discuss the Newmark’s Linear Acceleration Method. 

Let’s introduce an assumption that “the acceleration response varies linearly during each time increment”. 

This yields quadratic and cubic variations of velocity and displacement, respectively. 

 
 

 

At 𝜏 = ∆𝑡, the above equations for velocity and displacement becomes, 

𝑢̇(𝑡) = 𝑢̈(𝑡)∆𝑡 +
Δ𝑢

∆𝑡

̈ ∆𝑡2

2
 

𝑢(𝑡) = 𝑢̇(𝑡)∆𝑡 + 𝑢̈(𝑡)
∆𝑡2

2
+
Δ𝑢

∆𝑡

̈ ∆𝑡3

6
 

Re-writing the above two equations in terms of Δ𝑢(𝑡): 

∆𝑢̈(𝑡) =
6

∆𝑡2
∆𝑢(𝑡) −

6

∆𝑡
𝑢̇(𝑡) − 3𝑢̈(𝑡) 

Δ𝑢̇(𝑡) =
3

∆𝑡
∆𝑢(𝑡) − 3𝑢̇(𝑡) −

∆𝑡

2
𝑢̈(𝑡) 

The above two expressions are derived from the “linear acceleration “assumptions. 
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Let’s assume that the calculation is made up to Time = 𝑡 and we are going to proceed to the next time 

stop, 𝑡 + ∆𝑡. 

Hence, 

𝑢(𝑡), 𝑢̇(𝑡), 𝑢̈(𝑡) are known. 

∆𝑢(𝑡), ∆𝑢̇(𝑡), ∆𝑢̈(𝑡) are to be determined. 

3 unknowns in this time incremental steps, 

In fact only ∆𝑢(𝑡) has to be determined since the remaining ∆𝑢̇(𝑡) and ∆𝑢̈(𝑡) can be derived from ∆𝑢(𝑡) by 

the above two equations. In the other words, the “linear acceleration assumption” transforms the problem 

of 3 unknowns into the problem of one unknown ∆𝑢(𝑡). 

Introducing the above two equations into the incremental form of governing equation of motion, we obtain, 

𝑚[
6

∆𝑡2
∆𝑢(𝑡) −

6

∆𝑡
𝑢̇(𝑡) − 3𝑢̈(𝑡)] + 𝑐(𝑡) [

3

∆𝑡
∆𝑢(𝑡) − 3𝑢̇(𝑡) −

∆𝑡

2
𝑢̈(𝑡)] + 𝑘(𝑡)∆𝑢(𝑡) = ∆𝑝(𝑡) 

Re-writing the above equation, we get, 

𝑘̃(𝑡) ∆𝑢(𝑡) = ∆𝑝̃(𝑡) 

Where 

𝑘̃(𝑡) = 𝑘(𝑡) +
6

∆𝑡2
𝑚 +

3

∆𝑡
𝑐(𝑡) 

∆𝑝̃(𝑡) = ∆𝑝(𝑡) + 𝑚 [
6

∆𝑡
𝑢̇(𝑡) + 3𝑢̈(𝑡)] + 𝑐(𝑡) [3𝑢̇(𝑡) +

∆𝑡

2
𝑢̈(𝑡)] 

By this equation, ∆𝑢(𝑡) can be computed, and then the other two unknowns (∆𝑢̇(𝑡) and ∆𝑢̈(𝑡)) can be 

derived from the expressions mentioned above. 

Note: 

Two assumptions are used in this step-by- step calculation. 

1) Within {𝑡, 𝑡 + Δ𝑡}, Δ𝑓𝐷(𝑡) = 𝑐(𝑡)Δ𝑢̇  and Δ𝑓𝑠(𝑡) = 𝑘(𝑡)Δ𝑢 

2) Within {𝑡, 𝑡 + Δ𝑡}, acceleration varies linearly 

These assumptions are justified only when Δ𝑡 is sufficiently small, small Δ𝑡  small error. 

Although the error in each step is small, the error can be accumulate and become significant when the 

number of steps is large. 

The accumulation should be avoided by imposing the dynamic equilibrium condition at each time step. 
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Calculation flow chart: 

 
 

 

Additional notes: 

1. Response of any SDF system with any prescribed nonlinear properties can be evaluated by 

“step-by-step integration”. 

2. Response of linear SDOF system can also be evaluated by the step-by-step integration. 

3. To determine Δ𝑡, we should consider : 

 The rate of variation of the applied loading 𝑝(𝑡) 

 The nonlinearity of damping and stiffness properties. 

 The natural period of structure (𝑇) 

Rule of thumb: 

Δ𝑡/𝑇 ≤  1/10     

My suggestion: 

Δ𝑡/𝑇 ≤  1/30 
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4. The step-by-step integration technique will be extended for the calculation of responses of nonlinear 

MDF system later. More attention will be paid on the accumulation of error–as it is a major factor in the 

determination of Δ𝑡. 

 
The choice of Δ𝑡 also depends on the nonlinear properties of damping and stiffness 

 

An Assignment Example: Response to General Dynamic Loading 

Consider the following SDF system with 𝑚 =  2000 𝐾𝑔, 𝑘 =  800,000 𝑁/𝑚 and 𝜉 = 0.027 subjected to a 

dynamic loading 𝑝(𝑡) as shown below.  

The loading function 𝑝(𝑡) is a half sine pulse as shown below. 

𝑝(𝑡) = {
𝑝𝑜 sin(𝜋𝑡/𝑡𝑑) 𝑓𝑜𝑟 𝑡 < 𝑡𝑑

0 𝑓𝑜𝑟 𝑡 ≥ 𝑡𝑑
 

 

 
 

 
Consider at-rest initial conditions. 

𝑡𝑑 = 0.3 𝑠𝑒𝑐  

𝑝𝑜 = 5000 𝑁  

Find the displacement response for 0 ≤ 𝑡 ≤ 2 𝑠𝑒𝑐 as well as the maximum response.  

Note: 

You can find the response using two approaches. 

Option 1 (Analytical Approach):  

Consider this loading as an impulse loading. Divide the response into two phases. Determine the 

particular solution for phase 1 (i.e. loading phase) and determine the homogeneous solution as free 

vibration response. Plot the response together in both phases. The maximum displacement response can 

be in any phase (phase 1 or phase 2). 
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Option 2 (Numerical Approach):  

In this approach, you have two choices i.e. either use “Duhamel’s integral” (with numerical integration 

solution) or use the “Step-by-step Direct Integration” method. Determine the response from both 

procedures and compare.  

 

Example: 

 
An elastoplastic frame and dynamic loading 
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Comparison of elastoplastic with elastic response 

 

2.11. Earthquake Response of SDF Systems 

The ground acceleration is defined by numerical values at discrete time instants. These time instants 

should be closely spaced to describe accurately the highly irregular variation of acceleration with time. 

Typically, the time interval is chosen to be 1/100 to 1/50 of a second, requiring 1500 to 3000 ordinates to 

describe the ground motion. 

The governing equation of motion of an SDF system having a natural frequency 𝜔 and subjected to a 

ground motion 𝑢̈𝑔(𝑡) can be written as follows. 

𝑢̈(𝑡) + 2𝜉𝜔𝑢̇(𝑡) + 𝜔2𝑢(𝑡) = −𝑢̈𝑔(𝑡) 

It is clear that for a given 𝑢̈𝑔(𝑡), the deformation response 𝑢(𝑡) of the system depends only on the natural 

frequency 𝜔 or natural period 𝑇 of the system and its damping ratio 𝜉; writing formally, 𝑢 ≡  𝑢(𝑡, 𝑇, 𝜉). 

Thus any two systems having the same values of 𝑇 and 𝜉 will have the same deformation response 𝑢(𝑡) 
even though one system may be more massive than the other or one may be stiffer than the other. 
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Once the deformation response history 𝑢(𝑡) has been evaluated by dynamic analysis of the structure, the 

internal forces can be determined by static analysis of the structure at each time instant. Two methods to 

implement such analysis were mentioned in Chapter 1. Between them, the preferred approach in 

earthquake engineering is based on the concept of the equivalent static force 𝑓𝑠 because it can be related 

to earthquake forces specified in building codes. 

𝑓𝑠(𝑡) = 𝑘𝑢(𝑡) 

Where 𝑘 is the lateral stiffness of the frame. Expressing 𝑘 in terms of the mass 𝑚 gives 

𝑓𝑠(𝑡) = 𝑚𝜔
2𝑢(𝑡) = 𝑚𝐴(𝑡) 

Where 𝐴(𝑡) = 𝜔2𝑢(𝑡). Observe that the equivalent static force is m times 𝐴(𝑡), the pseudo-acceleration, 

not 𝑚 times the total acceleration 𝑢̈(𝑡). 

For the one-story frame the internal forces (e.g., the shears and moments in the columns and beam, or 

stress at any location) can be determined at a selected instant of time by static analysis of the structure 

subjected to the equivalent static lateral force 𝑓𝑠(𝑡) at the same time instant. Thus a static analysis of the 

structure would be necessary at each time instant when the responses are desired. In particular, the base 

shear 𝑉𝑏(𝑡) and the base overturning moment 𝑀𝑏(𝑡) are 

𝑉𝑏(𝑡) = 𝑓𝑠(𝑡) 

𝑀𝑏(𝑡) = ℎ𝑓𝑠(𝑡) 

Where ℎ is the height of the mass above the base. The above expressions can also be written as 

𝑉𝑏(𝑡) = 𝑚𝐴(𝑡) 

𝑀𝑏(𝑡) = ℎ𝑉𝑏(𝑡) 

 

2.11.1. The Concept of Response Spectrum 

A plot of the peak value of a response quantity as a function of the natural vibration period 𝑇 of the 

system, or a related parameter such as circular frequency 𝜔 or cyclic frequency 𝑓, is called the response 

spectrum for that quantity. Each such plot is for SDF systems having a fixed damping ratio 𝜉, and several 

such plots for different values of 𝜉 are included to cover the range of damping values encountered in 

actual structures. Whether the peak response is plotted against 𝑓 or 𝑇 is a matter of personal preference.  

A variety of response spectra can be defined depending on the response quantity that is plotted. Consider 

the following peak responses: 

𝑢𝑜(𝑇, 𝜉) = 𝑚𝑎𝑥|𝑢(𝑡, 𝑇, 𝜉)| 

𝑢̇𝑜(𝑇, 𝜉) = 𝑚𝑎𝑥|𝑢̇(𝑡, 𝑇, 𝜉)| 

𝑢̈𝑜(𝑇, 𝜉) = 𝑚𝑎𝑥|𝑢̈(𝑡, 𝑇, 𝜉)| 

The deformation response spectrum is a plot of 𝑢𝑜 against 𝑇 for fixed 𝜉. A similar plot for 𝑢̇𝑜 is the relative 

velocity response spectrum, and for 𝑢̈𝑜 is the acceleration response spectrum. 
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(a) Ground acceleration; (b) deformation response of three SDF systems with 𝜉 = 2% and T = 0.5, 1, and 

2 sec; (c) deformation response spectrum for 𝜉 = 2%. 

 

 

Pseudo-velocity response spectrum 

Consider a quantity V for an SDF system with natural frequency ω related to its peak deformation 𝐷 ≡  𝑢𝑜 

due to earthquake ground motion: 

𝑉 =  𝜔𝐷 =
2𝜋

𝑇
𝐷 

The quantity V has units of velocity. It is related to the peak value of strain energy 𝐸𝑠𝑜 stored in the 

system during the earthquake by the equation 

𝐸𝑠𝑜 =
𝑚𝑉2

2
 

This relationship can be derived from the definition of strain energy and using the definition of 𝑉 as 

follows: 

𝐸𝑠𝑜  =
𝑘𝑢𝑜

2

2
=
𝑘𝐷2

2
=
𝑘 (
𝑉
𝜔
)
2

2
=
𝑚𝑉2

2
 

The right side of above equation is the kinetic energy of the structural mass m with velocity 𝑉, called the 

peak pseudo-velocity. The prefix pseudo is used because V is not equal to the peak relative velocity 𝑢̇𝑜, 
although it has the correct units. 
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The pseudo-velocity response spectrum is a plot of 𝑉 as a function of the natural vibration period 𝑇, or 

natural vibration frequency 𝑓, of the system. For any ground motion, the peak pseudo-velocity 𝑉 for a 

system with natural period 𝑇 can be determined from above equation and the peak deformation 𝐷 of the 

same system available from the response spectrum. 

 

Pseudo-acceleration response spectrum 

Consider a quantity 𝐴 for an SDF system with natural frequency 𝜔 related to its peak deformation 𝐷 ≡  𝑢𝑜 
due to earthquake ground motion: 

𝐴 = 𝜔2𝐷 = (
2𝜋

𝑇
)
2

𝐷 

The quantity 𝐴 has units of acceleration and is related to the peak value of base shear 𝑉𝑏𝑜 or the peak 

value of the equivalent static force 𝑓𝑠𝑜. 

𝑉𝑏𝑜 = 𝑓𝑠𝑜 = 𝑚𝐴 

The peak base shear can be written in the form 

𝑉𝑏𝑜  =
𝐴

𝑔
𝑤 

where 𝑤 is the weight of the structure and 𝑔 the gravitational acceleration. When written in this form, 𝐴/𝑔 

may be interpreted as the base shear coefficient or lateral force coefficient. It is used in building codes to 

represent the coefficient by which the structural weight is multiplied to obtain the base shear. Observe 

that the base shear is equal to the inertia force associated with the mass 𝑚 undergoing acceleration 𝐴. 

This quantity 𝐴 is generally different from the peak acceleration 𝑢̈𝑜 to of the system. It is for this reason 

that we call 𝐴 the peak pseudo-acceleration; the prefix pseudo is used to avoid possible confusion with 

the true peak acceleration 𝑢̈𝑜. 

The pseudo-acceleration response spectrum is a plot of 𝐴 as a function of the natural vibration period 𝑇, 

or natural vibration frequency 𝑓, of the system. For any ground motion, the peak pseudo-acceleration 𝐴 

for a system with natural period 𝑇 and damping ratio 𝜉 can be determined from above equation and the 

peak deformation 𝐷 of the system from the spectrum. 
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Response spectra (𝜉 = 0.02) for El Centro ground motion: (a) deformation response spectrum; (b) 

pseudo-velocity response spectrum; (c) pseudo-acceleration response spectrum. 

 

Combined D-V-A response spectrum 

Each of the deformation, pseudo-velocity, and pseudo-acceleration response spectra for a given ground 

motion contains the same information, no more and no less. The three spectra are simply different ways 

of presenting the same information on structural response. 

Knowing one of the spectra, the other two can be obtained by algebraic operations mentioned above.  

Why do we need three spectra when each of them contains the same information? One of the reasons is 

that each spectrum directly provides a physically meaningful quantity. The deformation spectrum provides 

the peak deformation of a system. The pseudo-velocity spectrum is related directly to the peak strain 

energy stored in the system during the earthquake. The pseudo-acceleration spectrum is related directly 

to the peak value of the equivalent static force and base shear. The second reason lies in the fact that the 

shape of the spectrum can be approximated more readily for design purposes with the aid of all three 

spectral quantities rather than any one of them alone. For this purpose a combined plot showing all three 

of the spectral quantities is especially useful. This type of plot was developed for earthquake response 

spectra, apparently for the first time, by A. S. Veletsos and N. M. Newmark in 1960. 
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Combined D–V –A response spectrum for El Centro ground motion; 𝜉 = 2%. 

 

 
Combined D–V –A response spectrum for El Centro ground motion; 𝜉 = 0, 2, 5, 10, and 20%. 

 

Construction of Response Spectrum 

The response spectrum for a given ground motion component 𝑢̈𝑔(𝑡) can be developed by implementation 

of the following steps: 



Part 1 - Structural Dynamics – The Basics 

Dynamics of Single-Degree-of-Freedom (SDF) Systems  146 

 

1. Numerically define the ground acceleration 𝑢̈𝑔(𝑡); typically, the ground motion ordinates are defined 

every 0.02 sec. 

2. Select the natural vibration period 𝑇 and damping ratio 𝜉 of an SDF system. 

3. Compute the deformation response 𝑢(𝑡) of this SDF system due to the ground motion 𝑢̈𝑔(𝑡) by any of 

the numerical methods. 

4. Determine 𝑢𝑜, the peak value of 𝑢(𝑡). 

5. The spectral ordinates are 𝐷 = 𝑢𝑜, 𝑉 = (2𝜋/𝑇)𝐷, and 𝐴 = (2𝜋/𝑇)2𝐷. 

6. Repeat steps 2 to 5 for a range of 𝑇 and 𝜉 values covering all possible systems of engineering interest. 

7. Present the results of steps 2 to 6 graphically to produce three separate spectra or a combined 

spectrum. 

 

Solved Example: Application of Response Spectra to SDF Systems 

A 12-ft-long vertical cantilever, a 4-in.-nominal-diameter standard steel pipe, supports a 5200-lb weight 

attached at the tip as shown in Figure below. The properties of the pipe are: outside diameter, 𝑑𝑜 =

4.5 𝑖𝑛., inside diameter 𝑑𝑖 = 4.026 𝑖𝑛., thickness 𝑡 = 0.237 𝑖𝑛., and second moment of cross-sectional 

area, 𝐼 = 7.23 𝑖𝑛4, elastic modulus 𝐸 = 29,000 𝑘𝑠𝑖, and weight = 10.79 𝑙𝑏/𝑓𝑜𝑜𝑡 𝑙𝑒𝑛𝑔𝑡ℎ. Determine the 

peak deformation and bending stress in the cantilever due to the El Centro ground motion. Assume that 

𝜉 = 2%.  
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Taken from Chopra (2004) 

 

 

  




