CE 809 - Structural Dynamics

Lecture 7: EQ Response of SDF Systems - Concept of Elastic Response Spectrum

Semester – Fall 2020

Dr. Fawad A. Najam

Department of Structural Engineering NUST Institute of Civil Engineering (NICE) National University of Sciences and Technology (NUST) H-12 Islamabad, Pakistan Cell: 92-334-5192533, Email: fawad@nice.nust.edu.pk

Prof. Dr. Pennung Warnitchai

Head, Department of Civil and Infrastructure Engineering School of Engineering and Technology (SET) Asian Institute of Technology (AIT) Bangkok, Thailand

The Concept of Response Spectrum

The governing equation of motion of an SDF system subjected to a ground motion $\ddot{u}_g(t)$ can be written as follows.

$$m \ddot{u}(t) + c \dot{u}(t) + k u(t) = -m \ddot{u}_g(t)$$

$$c = 2 m \xi \omega , \quad \omega^2 = \frac{k}{m}$$

$$\ddot{u}(t) + 2 \xi \omega \dot{u}(t) + \omega^2 u(t) = -\ddot{u}_g(t)$$

$$u_o(T,\xi) = \max |u(t,T,\xi)|$$
$$\dot{u}_o(T,\xi) = \max |\dot{u}(t,T,\xi)|$$
$$\ddot{u}_o(T,\xi) = \max |\ddot{u}(t,T,\xi)|$$

The deformation response spectrum is a plot of u_o against T for fixed ξ . A similar plot for \dot{u}_o is the velocity response spectrum, and for \ddot{u}_o is the acceleration response spectrum.

(a) Ground acceleration; (b) deformation response of three SDF systems with $\xi = 2\%$ and T = 0.5, 1, and 2 sec; (c) deformation response spectrum for $\xi = 2\%$.

Pseudo-velocity response spectrum

• Consider a quantity V for an SDF system with natural frequency ω related to its peak deformation $D \equiv u_o$ due to earthquake ground motion:

$$V = \omega D = \frac{2\pi}{T}D$$

- The quantity V has units of velocity. This is pseudo-velocity.
- Using the above expression, the displacement response spectrum can be converted to the Pseudo-velocity response spectrum.

Pseudo-acceleration response spectrum

• Consider a quantity A for an SDF system with natural frequency ω related to its peak deformation $D \equiv u_o$ due to earthquake ground motion:

$$A = \omega^2 D = \left(\frac{2\pi}{T}\right)^2 D$$

- The quantity A has units of acceleration. This is pseudo-acceleration.
- Using the above expression, the displacement response spectrum can be converted to the Pseudo-acceleration response spectrum.

Response spectra ($\xi = 0.02$) for EI Centro ground motion: (a) deformation response spectrum; (b) pseudo-velocity response spectrum; (c) pseudo-acceleration response spectrum.

Pseudo-acceleration response spectrum

• The quantity A is related to the peak value of base shear V_{bo} or the peak value of the equivalent static force f_{so} .

$$V_{bo} = f_{so} = mA$$

The peak base shear can be written in the form

$$V_{bo} = \frac{A}{g}w$$
 , $f_{so} = \frac{A}{g}w$

Combined D-V-A response spectrum

• The three spectra (deformation, pseudo-velocity, and pseudo-acceleration) are simply different ways of presenting the same information on structural response for a given ground motion.

 Knowing one of the spectra, the other two can be obtained by algebraic operations mentioned earlier.

Combined D–V –A response spectrum for El Centro ground motion

 ξ = 0, 2, 5, 10, and 20%.

Construction of Response Spectrum

The response spectrum for a given ground motion component $\ddot{u}_g(t)$ can be developed by implementation of the following steps:

- 1) Numerically define the ground acceleration $\ddot{u}_g(t)$; typically, the ground motion ordinates are defined every 0.02 sec.
- 2) Select the natural vibration period T and damping ratio ξ of an SDF system.
- 3) Compute the deformation response u(t) of this SDF system due to the ground motion $\ddot{u}_g(t)$ by any of the numerical methods.
- 4) Determine u_o , the peak value of u(t).

Construction of Response Spectrum

- 5) The spectral ordinates are $D = u_o$, $V = (2\pi/T)D$, and $A = (2\pi/T)^2D$.
- 6) Repeat steps 2 to 5 for a range of T and ξ values covering all possible systems of engineering interest.
- 7) Present the results of steps 2 to 6 graphically to produce three separate spectra or a combined spectrum.

RS provides a practical approach to apply the knowledge of structural dynamics to the design of of structures and development of lateral force Requirements in building codes.

Response spectrum Analysis
procedure

Use of Response Spectrum – SDF Systems

Solved Example

A 12-ft-long vertical cantilever, a 4-in.-nominal-diameter standard steel pipe, supports a 5200-lb weight attached at the tip as shown in Figure.

The properties of the pipe are: outside diameter, $d_o = 4.5 \ in$., inside diameter $d_i = 4.026 \ in$., thickness $t = 0.237 \ in$., and second moment of cross-sectional area, $I = 7.23 \ in^4$, elastic modulus $E = 29,000 \ ksi$, and weight $= 10.79 \ lb/foot \ length$.

Determine the peak deformation and bending stress in the cantilever due to the El Centro ground motion. Assume that $\xi=2\%$.

Solution The lateral stiffness of this SDF system is

$$k = \frac{3EI}{L^3} = \frac{3(29 \times 10^3)7.23}{(12 \times 12)^3} = 0.211 \text{ kip/in.}$$

The total weight of the pipe is $10.79 \times 12 = 129.5$ lb, which may be neglected relative to the lumped weight of 5200 lb. Thus

$$m = \frac{w}{g} = \frac{5.20}{386} = 0.01347 \text{ kip-sec}^2/\text{in}.$$

The natural vibration frequency and period of the system are

$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{0.211}{0.01347}} = 3.958 \text{ rad/sec}$$
 $T_n = 1.59 \text{ sec}$

From the response spectrum curve for $\zeta = 2\%$ (Fig. E6.2b), for $T_n = 1.59$ sec, D = 5.0 in. and A = 0.20g. The peak deformation is

$$u_o = D = 5.0 \text{ in.}$$

The peak value of the equivalent static force is

$$f_{So} = \frac{A}{g}w = 0.20 \times 5.2 = 1.04 \text{ kips}$$

The bending moment diagram is shown in Fig. E6.2d with the maximum moment at the base = 12.48 kip-ft. Points A and B shown in Fig. E6.2e are the locations of maximum bending stress:

$$\sigma_{\text{max}} = \frac{Mc}{I} = \frac{(12.48 \times 12)(4.5/2)}{7.23} = 46.5 \text{ ksi}$$

