CE 809 - Structural Dynamics

Lecture 6: Response of SDF Systems to General Dynamic Loading

Semester — Fall 2020

Dr. Fawad A. Najam

Department of Structural Engineering

NUST Institute of Civil Engineering (NICE)

National University of Sciences and Technology (NUST)
H-12 Islamabad, Pakistan

Cell: 92-334-5192533, Email: fawad@nice.nust.edu.pk

Prof. Dr. Pennung Warnitchai

Head, Department of Civil and Infrastructure Engineering
School of Engineering and Technology (SET)

Asian Institute of Technology (AIT)

Bangkok, Thailand



Response to

General Dynamic Loading

Duhamel’s Integral

(Convolution Integral)

Step-by-step Direct Integration
Methods

Based on the principle of
superposition (It considers the
general dynamic loading as a series
of short impulses).

Applicable only to linear systems

Based on the direct numerical
Integration of the governing
equation of motion in incremental

form.

Applicable to linear and nonlinear
systems




Duhamel’s Integral




Duhamel’s Integral

e A general dynamic loading =
A series of short Impulses

e Each impulse produce its
own (impulse) response

e The sum of these impulse
responses = the response to
the dynamic loading




Duhamel’s Integral

Let du(t; ) is the response of a linear dynamic system at time ¢ due to impulse p(7) dt at

time T.
du(t;t) = p@dr. ht-v (1)
Where
(g—¢w(t-1)
ht-1 =4 maw, sin(wp(t-1)),  t>71 (2)

h (t — t) = unit impulse response (or response to unit impulse applied att = T).



du(t;ry = p@)dt.h(t—71)
du(t; T = 0.At) =  p(0.At)dAt.h(t—0.At)
du(t;t=1.At) =  p(LA)dAL.h(t—1.At)
du(t;t=2.At) = p@E.A)dAE.h(t—2.At)
du(t; T = i.At) = p@.AY) dAt.h(t—i.At)

=1
u(t) = j p(t). h(t—-1)drt
=0
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Response to General Dynamic Loading - Duhamel’s Integral

By means of superposition the total responsive u(t) can be obtained by summing all
Impulse responses developed during the loading history.

=1

u(t) = J p(). h(t—0dt | e (3)

=0

The integration is called “Convolution Integral” in general theory of mathematics and
“‘Duhamel’s Integral” in structural dynamics.



Response to General Dynamic Loading - Duhamel’s Integral

In Equation (3), it is assumed that the structure is initially at-rest condition

Thatis u(0)= 0, 1(0)= 0.

For other cases, additional free vibration response must be added to the solution:

t

sin(wpt) + u(0) cos(th)] + fp(r) h(t—1) dt
0

w0+ u0)é w
Wp

-Swt

ut) =e

In the following investigation, the initial at-rest condition is assumed.




Response to General Dynamic Loading - Duhamel’s Integral

t
j p(r). e $ @D sin(a)D (t — T)) dt
0 \ Y J\ Y ;
e~$wt pfwt  sin(wpt) cos(wpt) — cos(wpt) sin(wpt)

1

Wp

u) =

Therefore,

t

j p(7). e"’z“)tef“”[sin(wpt) cos(wpT) — cos(wpt) sin(a)DT)]dT
0

1

Wp

ut) =



Response to General Dynamic Loading - Duhamel’s Integral

By rearranging the terms, we get

i t T i t
—-¢wt —-¢wt
u ()= fna)D J p (7). €57 cos(wp1) dt | sin(wpt) — fna)D f p(1).ef°T sin(wpt) d7 | cos(wpt)
0 | i 0
So we can write u(t) = A(t) sinwpt — B(t) cos wpt
Where —Ewt t
e
A(t) = (f p(r).e$°T. cos(wpT) dr)
Wp 0
e—Ewt t
B(t) = (f p(1) .e5°%. sin(wpT) dr)
Wp 0




Response to General Dynamic Loading - Duhamel’s Integral

For undamped case,

1 t
Al = —(J p(r). cos(w T) dr)
0

m w

m

1 t
B(t) = — <f p(r). sin(w 1) dT)
0

The terms in parenthesis for (both damped and undamped cases) need “numerical integration”.




Numerical Integration

Simple Summation:

t
jof(r)dr = M(fo+fi+tfh+fi+ fv_1)

Where f; = f(r = i.At), and AT = t/N (@

A
;‘E{/’NF, ,2 7 £
“L‘%‘AT ‘




Numerical Integration

Trapezoidal Rule:

‘ At
| fodr = 5 (ot 2hi+ 26+ 2+ 2 + )
0
Where f; = f(i.A7) , and AT = t/N ,{(T) | fi+ firn "
rd
V




Solving Duhamel’s Integral using Numerical Integration

* For example, consider the numerical integration of
a function y(r) = p(z)cos wt as required to find
A(t) in Duhamel’s Integral.

» For convenience of numerical calculation, the
function y(7) is evaluated at equal time increments
At as shown in Figure.

« The integral Ay can now be obtained
approximately by summing the ordinates, after
multiplying by weighting actors that depend on the
numerical integration scheme being used.

Source: Clough and Penzien (2003)

A p(T)
Dy D P Ps Dy .
Ps P
A COSMT
=T
«— AT e AT > AT > AT >« AT AT 4>!<—
4 Y(T) =p(f) cos 0T
Y3 Y,
Yo Y1 Ya I e .
t, 1t f, t, , Ys |V




Solving Duhamel’s Integral using Numerical Integration
Undamped Systems

Simple summation:

AT

Ay=—Iyo+y1 ty2 + -+ yy_1l

m w

Trapezoidal rule:

AT

= 2 2
N me[y0+ Y1t 2y, +

Simpson’s rule:

AT

Ay = + 4y, + 2y, +
N 3mw[)’o V1 Y2

Source: Clough and Penzien (2003)

o+ 2YN-1 t Y]

o+ 4yy-_1 + yn]

4 p(T)
Py Dy D Ps Dy ot
Ps P
4 COS T
_‘-‘-‘-‘-‘-—‘-—‘-—‘--‘-__-—‘-‘-‘-h""‘—-

T

T

- AT —»a— AT >« AT > AT > AT »=«+AT 4447

4 ¥(T) =p(f) cos ®T




It is more efficient to write these equations in their recursive forms:

Simple summation:

AT

Ay = Ay_1 +— _
N N-1 mw[)’N 1]

Trapezoidal rule:

AT
2mw

Ay =Ay_ 1 + lyn-1 + ¥l

Simpson’s rule:

AT
3muw

AN — AN—l +

Suchthat Ay = 0

Source: Clough and Penzien (2003)

N=123,..

N=1,23,..

(Voo + 4yn_1 +yy] N=246 .

4 p(T)
Po P Pr P3 Dy .
Ps Ps
A COSMT
=T
- AT > AT >« AT > AT >+ AT —»<AT 4447

s Y(T) =p(f) cos T




Solving Duhamel’s Integral using Numerical Integration

Damped Systems

Simple summation:

At
Ay = e SOAT 4. .+ e§ @ AT N=1,23,..
N N-1 mwp lyn-1]
Trapezoidal rule:
-&w At At -§w At
Ay =e AN—1+2mw [yn-1e + yn] N=123,..
D
Simpson’s rule:
At
Ay = e 2808T 4. . + [yN , e 28@AT L4y, e E“’AT+yN] N =2,4,6,..
3m(1)D

-—
N



Solving Duhamel’s Integral using Numerical Integration

« The evaluation of B (t) can be carried out in the same manner, however, in doing so, the
definition of y (7) must be changed to y () = p (t) sin(wT).

« Having calculated the values of Ay and By for successive values of N, the
corresponding values of response u, are obtained using

uy = Ay sin(wty) — By cos(wty)

Source: Clough and Penzien (2003)

-
(o)



Numerical Example

Taken from Clough and Penzien (2003)
The unit of force is kips.

v(t) ﬂ W=96.6 ki 1.0 kip = 1000 Ibs
/ . A p(1)
- ~— p@)
i

A

<— k =12,700 kips/ ft

——— 96.6 kips The unit of displacement is ft.

The unit of velocity is ft/s.

The unit of acceleration is ft/s2.

- [ 1.0 g = 32.2 ft/s?

|

|

|

|

|

|

|

|
) 0.025 Sec>|< 0.025 sec d The unit of mass is the unit of force
| . divided by the unit of acceleration.

Js Loading history Kip- s? /ft
A water tower subjected to blast load The unit of stiffness is the unit of force
divided by the unit of displacement.
Kip/ft
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Numerical Example
Taken from Clough and Penzien (2003)

TABLE Eé-1

Numerical Duhamel integral analysis without damping

N Iy Py sin30tdeos30ny| vy lvw_ilve-o] Mix | Myx AHF-! i;' yu | Pwo|vwoz| M % M,x E:'E-'-_I Eﬁ?' Vy sz
(x(3) (5) |6y (OHNHA [(Hx(2) (12) [[U3mi6)] UIHIOHIH| IO 2) | DD I | Fx(20) [kx(21)

sec kips kips kips It kips
mlale|lew|lewleolo] ® | ® woy |un lunlunfun | us | us (17) | un | o | @n | @

0(0.000| o 0o [1o00] 0 | —| —| —| — | — 0 o | —| —| —| — — 0 0 0 0 o | o
I [0.005(19.32}0.149[0.989|19.1] 0 | —| —| — | — — |288] 0| =] —| — — — — | =1 - i | —
2 |0.010 [38.64]0.296/0.955|36.9]19.1| 0 |76.4| 0 0 113.3 |11.4(2.88) 0 [11.5] O 0 22.9 33.5 | 21.9 | 11.6 [0.0002|0.54
3(0.015(57.96] 0.435{0.900(52.2{36.9]19.1] — | — | — — |25.2|11.4)2.88) — | — — —_ - = - — | —
410.020[77.28| 0.565[0.825] 63.8 |52.2{36.9208.8| 150.2 | 113.3 | 422.8 |43.7|25.2[11.4{100.8] 34.3 [22.9| 178.8 | 239 | 148 | 91 [0.0017/4.60
50.025[96.60| 0.682|0.732(70.7 |63.8]52.2] — | — | — — |e65.9]43.7|252 — | — — — - - — — | —
6 (0.030[77.28 0.783/0.622 | 48.1 {70.7| 63.8|282.8| 486.6 [ 422.8 | 817.5 |60.5|65.9|43.7[263.6] 222.5 [178.8] 546.6 | 640 | 340 | 300 [0.0056|15.1
710.035[57.96|0.867|0.498]28.9 |48.1[70.7] — | — | — — |s0.3]60.565.90 — | — — — -] - - — | —
8 [0.040 [38.64|0.932]0.362| 14.0 |28.9{48.1[115.6| 865.6 | 817.5 | 995.2 |36.0(50.3|60.5{201.2| 607.1 [546.6] 844.3 | 928 | 306 | 622 |0.015]31.0
9 [0.045(19.32} 0.976[0.219| 4.23 |14.0{289| —| — | — — |18.9]36.0/50.3] — | — — — - -1 - — | =
10/0.050] 0 |0.997/0.0707] 0 [4.23]14.0{16.9] 1009 |995.2 | 1026 | 0 |18.9(36.0/75.6| 880.3 |844.3| 9559 | 1023 | 67.6 | 955 [0.0177{47.8

AT _\852x1075fi/kip  k = 2700 kips / fi

m=J‘k£'=30md.-'sec At = 0.0005 sec M, =4 My=1 F=




TABLEEG6-2
Numerical Duhamelintegral analysisincluding damping
N x| P |sind0rkos3on] v |rvoalon-al Myx] Myx i;‘-l -J%. Yn Iraalyas Miox] Myx %i _BF:'L vy Ssy
(Hx(3) ) |oro) OLTHE (DX (12) [i(131¢16)) I UD] 10 |7 BN 8- 19)| Fx(20) [ix(21)
sec | kips kips kips N kips
Dlalo|lwlo|le|la|l @ | ® uoy | un funfunfua| us | ve u?) us) | un | o | @n | @
0fo000| o o |1owo| o | —| —| —| — | — 0 o|—|—| -] — | — 0 0 0 0 o |o
110005 [19.32] 0.149] 0989 [ 191 | 0 | —| —| — | — — |28|0]| —| =] — | — — - = =1 -1 -
2| 0.01038.64 | 0.296] 0.955| 369 |[19.1| 0 |758] o 0 1127 | 11428 0 |n4| o 0 228 333 | 218 | 11,5 [0.0002] 0.58
3|0.015|s7.96 | 0.435] 0.900 | 52.2 |369| 19| —| — | — — 2524288 —| — | — — - = -1 =1 =
4]0.020 |77.28 | 0.565| 0.825 | 63.8 |52.2|36.9(207.2| 147.4 | 1127 | 4184 |43.7 252 11.4)1000] 337 |228] 1774 | 236 | 146 | 90 [0.0017| 4.50
5] 0.025 |96.60 | 0.682| 0.732]| 70.7 |63.8|522| —| — | — — |es9|a37|252] —| — | — — - =] =1 =1 -
6]0.030 [77.28 | 0.783| 0.622 | 48.1 |70.7| 63.8[280.7) 4750 | 4184 | 8038 | 60.5 |65.9]43.7[261.6] 217.8 [177.4] 5399 | 629 | 336 | 293 |0.0054|14.65
7/0.035 |57.96 | 0.867| 0.498 | 289 |48.1|707| —| — | — — |s03]605]659] —| — | — — - -] =] - =
80.040 |38.64 | 0.932| 0.362 | 14.0 |28.9|48.1[114.7] 839.1 | 803.8 | 967.8 |36.0 |50.3/60.5]199.7| s91.4 |[5399] 8271 | 902 | 299 | 603 |0.0112]30.2
9]0045 [19.32| 0976/ 0.219| 4.23 [14.0| 289 —| — [ — — [189]360/503] —| — — —_ - = =1 =1 -
10{0050| 0 | 0997/0.0707| o [4.23|14.0/16.8| 967.1{967.8 | 9839 | 0 |189]36.0|750| 850.1 |[827.1] 925.1 981 | 654 | 915 |0.0169| 458
1nfooss| o |0997F00791 o | 0 [423| —| — | — — | o ]o|igy —| — | — - - - -1 -1 -
12/10060 0 |0974[-0227 o | 0 | o 0o [ 969.1|9839 | 9691 | o | 0| 0] o | 9n2 [925a] 9112 | 900 | —206| 1106 [0.0205| 55.4
13/0065| 0 |0929]-0320 0 |0 | 0| —| — | — — lojojof| -] — | — — - = =1 =1 =
14]0070| 0 | 0863|-0505| 0 | 0 | 0| 0 | 954.6 | 969.1 0 o |ofo] o] s7s [on2 8975 | 824 | 453 1277 [0.0236| 63.9
15/0075| 0 |0778]-0628] 0 |0 | 0| —| — | — — lololof| -] — | — - - - =] =1 =
16/0080| 0 |0675]-0737] 0 [ 0 | 0| 0 [ 9403|9546 | 9403 | 0 | 0| 0| o | 8840 |[897.5| 8840 | 635 [-651.5| 1286 |0.0238] 64.3
17/0.085| 0 |0.558]-0830] 0 |0 | 0| —| — | - — ofofo| —| — | — - - - =] =1 —
18/0.090| 0 | 0427|-0904] 0 | 0 | 0| 0 | 9262|9403 | 9262 | o | 0| o [ o | 8707 |ss40| 8707 | 395 | -787 | 1182 |0.0219] 59.1

w:J-f—f—:BOmd.fscc At=0005scc M, =dexp(-EwAr) =397 M, = cxp (-2 EwAr) = 0.985 F--5‘91-=|352x10'5ﬁmp k = 2700 kips/ ft 21

mw



Elastic response force f, kips
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Numerical Example
Taken from Clough and Penzien (2003)

|
A«—Blast load
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Duhamel’s Integral

The concept of convolution integral will be used again later when we study the response

of structures to random loadings from statistical view point (random vibration theory).

The Convolution Integral is derived based on the principle of superposition. So, it is

applicable only for the response analysis of “linear systems”.

IN
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Applications

Evaluation of Structural Response to Earthquake Ground Motions

d?u(t) du(t)

m +c

dt?

dt

m

+ku(t) =—m

I 4F & O T SN S I 7 £ 4 YA A e e

Vd

VA A A A AV A 4 ar 4 o 4

<> ug(t)

d*ugy(t)
dt?
. EL CENTRO,
t : . ’
Hg(® SOOE COMPONENT,
0.hg— ~ MAY 18, 1940

1 L |
0 10 20 30
TIME, sec



Applications

Evaluation of Response Spectrum of
Earthquake Ground Motions

Computation of deformation (or
displacement) response spectrum

o
l

- NATURAL VIBRATION PERIOD, T, sec

— 2.48 in.
T =0.5 sec -»c': ° 1
|1& = 0.02%‘ “: -10 | | l‘:;"
2 10 .
Z" :
— ~+Z 0 PANMIAAAAAAAAAA-AAAA
= ec u = 6 61 i
= < max . in.
g = 0.02 § -10 | | i 1
. Q
L 10~
Q‘ '
T = 2 sec
£ = 0.02
- 0 10 20 30
TIME, sec
20 T ) ! J J
DEFORMAT I ON
. 15} (OR DISPLACEMENT)
< _RESPONSE SPECTRUT///—J/ﬁ~
. 10FE = 2 PERCENT 1 :
S &L ——
<
0 ' : ~
0 1 2 3T



Step-by-step Direct Integration Method

Or Time-stepping Method




Step-by-step Direct Integration Method

General Dynamic loadings

Linear & Nonlinear Structures

In some important structural dynamic problems, the responses of structures are in

nonlinear range.

For example, the response of a structure subjected to a major earthquake.

IN
N
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Steel Column
- Elasto-plastic

Concrete Cracking

Rebar Yielding

Nonlinear System
Nonlinear Equation

Duhamel’s Integral is
not applicable

40



Step-by-step Integration Procedure

Consider the dynamic equilibrium (in scalar form) of a nonlinear structure at time t:

fio+tHho+O=p©® | (1)
Where
fr®) =mu() p(t) is an arbitrary/general
fp(®) # ci(t) loading.
Damping force may not be a linear function of velocity (t). /\p(t? |

fs(@© # ku)

| . . | | >t
Restoring force is a nonlinear function of displacement u(t). -

IN
o



Step-by-step Integration Procedure

i® +fH® +0 = p© (1)

At a small time At later:

fiie+At) + fp(t+At) + fo(t+At) = P(t + At)  ceeeeenee (2)

Subtract Equation (2) by Equation (1), we get

Af;(® + Afp(® + Af® =Ap@ | e (3)

Where Afi(t) = f; (t + At) — f1(t) = m Aii(t)

d
Afp(t) = fp(t+ A1) — fp(®) = (d—if) CAU() = c(@) . Au(t)
t

dfs
Afs(t) = fo(t+ At) — f5(t) = (%) Au(t) = k(t). Ault)
t



fs(t + At)

fs(©®

ok \ AP® =P+ —p©

i
. : Time
fs | b tekar \_

Afs(®) = fo(t+48) — fs(©)

~ (%

>
<

N\
N

- - = =TT TN
+ :
N

= k(t).Au

- . S,
/
2 4
<

=

u(t + At)



Step-by-step Integration Procedure

We have introduced the following two approximations:

fs
AfD(t) = c(t) . Au(t) N A Slope
fs(t + At) Afs(t) / = (%>
—___}—__——_ // 5 du ¢
P St ; =k@®
Af.(0) = k() . Au(t) £ y E i
/ ?: :QAu(t)
They are equivalent to the assumption that the damping E l -
and restoring forces are linear within t and t + At / I\ 7"
g ' u(t) w(t + At)

“Piecewise Linear Approximation of Structural System”



Step-by-step Integration Procedure

The incremental equation of motion (Equation 3) becomes,

mAuU@) + c@)Au() + k@ Au) = Apt) ... (4)

Introducing an assumption that “the acceleration response varies linearly during each
time increment”.

This yields quadratic and cubic variations of velocity and displacement, respectively.

Iw
o



u)+ Au(r)

u) é—‘\ Al () ‘the acceleration response
- At () = 1) + 1 | varies linearly during each
At time increment”.
t t + At T
— u() =ut) + f u(r) dr
ut) + Au(t) 0

i<

u_(t) /(\\ P

u(t) + Au(t)

u@D=ul®) +ul).t+

Aii(t) T2

At

-2

1

Au (1)

u(r) = u(t) +f

u@ =ul) +ul).t+ u). > +

T

0

u(r) dt

T2

Aii(t) T3
At 6

Au ()

(7)



Step-by-step Integration Procedure

At T = At, the above equations for velocity and displacement becomes,

Aii(t) At?
- — 3 A — . (8)
Au(t) = u(t). At + Ar o
NLe) = 1O At 4 e At? +Au(t) At3 .
u(t) = u(t). u(t). > Ar e (9)
Re-writing the above two equations in terms of Au(t):
6 6
1 (t) = — 1 (F) — A e (10)
Au (t) AtZ'Au(t) At'u(t) 3 u(t)
ML) =~ M) — 30O — =i (11)
u(t) = Ar u(t) u (t) > A e

Equations (10) and (11) are derived from the “linear acceleration assumption”.

Iw
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Step-by-step Integration Procedure

Introducing Equations (10) and (11) into the incremental form of governing equation of
motion (Equation (4)), we obtain

6 6 . 3 . At
m [A—tz.Au(t) — A—t.u(t) -3 u(t)] + c(t) [A—t.Au(t) —3u(t) — 7.u(t)] + k(t). Au(t) = Ap(t)

Re-writing the above equation, we get,

k@) . Au@®) =A@ | e, (12)
Where
- 6 3
k() = k(t) +A_tz'm +A—t.c(t)

At
AD) = Dpy +m [A— (e +3 u(t)] e [3U® + =

Iw
&



Step-by-step Integration Procedure

E(t) Au@) = APE) | e (12)
Where
~ 6 3
k(t) = k() +A_tz'm +A_t'c(t)

6 At
Ap(t) = Ap(t) + m [A—t.u(t) + 3 il(t)] + c(t) [3 u(t) + 7.11(1:)]

Let's assume that the calculation is made up to Time = t and we are going to proceed to the
next time stop, t + At.

Hence, u(t), u(t), i(t) are known, and k(t), c(t) , m and Ap(t) are also known.

Au(t) can be determined. Au(t) and Aui(t) can be derived from Au(t) by Egs (11) and (10).
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Step-by-step Integration Procedure

Note:

Two assumptions are used in this step-by-step calculation.

1) Within {t, t + At}, Afp(t) = c(t). At (t) and Af;(t) = k(t). Au(t)
2) Within {¢t, t + At}, acceleration varies linearly

These assumptions are justified only when At is sufficiently small, small At - small error.

Although the error in each step is small, the error can accumulate and becomes significant
when the number of steps is large.

The accumulation should be avoided by imposing the dynamic equilibrium condition at each
time step.

Iw
%



Time =t

Impose dynamic
equilibrium condition

Time = t+ At

u(t) and u(t) are known

Evaluate K(t) = (%) (o) = <%> | fs(®) = fs(u(t))
t t

du du fo () = fp(u(t))
v
i1 = [0~ o0 ~ (O] Equation (1)
!
k(t) = k(t) +Aitz.m +Ait'c(t)

AB(E) = Ap(t) +m [%.u(t) +3 il(t)] +c(t) [3 i(t) + %.il(t)

Au(t) = Aﬁ(t)‘/fc(t) Equation (12)

v

Au(t) = A%Au(t) — 30(t) — %u(t) Equation (11)

u(t + At) = u(t) + Au(e)
u(t + At) = u(t) + Au(t)

Calculation
flow chart



Additional Notes

. Response of any SDF system with any prescribed nonlinear properties can be evaluated

by “step-by-step integration”.

. Response of any linear SDF system can also be evaluated by the step-by-step

Integration.

. To determine At, we should consider :

e The rate of variation of the applied loading p (t)

e The nonlinearity of damping and stiffness properties.

e The natural period of structure (T)



Additional Notes

The choice of At also depends on the nonlinear properties of damping and stiffness

Ns (f—\ Need a very
Ny
At/T < 1/10 o ‘

small At

Rule of thumb:

My suggestion:

At/T < 1/30 7 7 u

. The step-by-step integration technique will be extended for the calculation of responses
of nonlinear MDF systems later.

More attention will be paid on the accumulation of error — as it is a major factor in the
determination of At.



Numerical Example
Taken from Clough and Penzien (2003)

|—> u(t
m = 0.1 kips-sec’/in (t) 4 fs 12in Uoax
() T -
6 kips
c=0.2 kips-sec/in
k=5 kips/in (total) )f v
—6kips '\
i _L =~ Inelastic displacement
2 p(D), kips Elastoplastic stiffness
8
7
Load history :
5 5 An elastoplastic frame

; and dynamic loading

2
1

[ [
0 02 04 06 038

> {, sec

I-h
R



Numerical Example Taken from Clough and Penzien (2003)

TABLE E7-1
Nonlinear response analysis: linear acceleration step-by-step method
Structure and loading in Fig. E7-3

t | p v v S - I v |Ap| 66 [031% Apa k k A, 304, 3, |005; Ay
5v* ] 029 [(2-(5)-(6)|10x(7 (9 10y 1) 66+(13)| (12)+(14) (16)—(17)y—(18)

sec | kips in in/sec

1@ A “) &) (6) ? & |9 | 0 (1) (12) (13| (4) (15) (16) (17) | (18) (19
0.0] 0 |0 0 0 0 0 0 5 0 0 0 5 71 0.070 2.11 0 0 2.11
0.1 5 |0.070] 2.11 | 0.35| 0.42 4.23 42.31 3 | 13.92] 13.12 30.04 5 71 0.423 | 12.68| 6.33| 2.11 4.24
0.2 | 8 |0.493| 6.35 | 2.46| 1.27 4.27 | 42.7|-1 | 41.90] 13.25 54.15 5 71 0.763 | 22.88| 19.06] 2.14 1.68
03] 7 |1.256] 8.03 | 6 1.61| -0.61 |-6.1|-2| 53.02|-1.89 49.13 | 0**| 66 0.744 | 22.33( 24.08| -0.30] -1.45
0.4 5 |2.000f 658 | 6 1.32| -2.32 [|-23.2|-2 | 43.43|-7.19 34.24 0 66 0.519 | 15.57| 19.74| -1.16] -3.01
0.5| 3 |2.519] 357 | 6 0.71| =3.71 |-37.1|—1 | 23.56}+11.50 11.06 0 66 0.168 5.02| 10.72 —-1.85| -3.85
0.6 2 |2.687|-0.28 | 6 -0.06| -3.94 |-39.4|—-1 ( —1.85+12.22| -15.07 5 71 | -0.212 | -6.36| —0.84( -1.97| -3.55
0.7 1 [2.475|-3.83 | 4.94|-0.77| -3.17 }31.7|-1 |-25.28|-9.82| -36.10 5 71 | —-0.508 |-15.24|-11.49| —-1.58] -2.17
0.81 0 |1.967|-6.00 | 2.40|-1.20] —1.20 {-12.0| 0 |-39.60|-3.72| -43.32 5 71 | -0.610 -18.30|-18.00( —0.60 0.30
09| 0 |1.357|-5.70 |-0.65|—1.14 1.79 17.9] 0 |-37.62| 5.55| -32.07 5 71 | —0.452 |13.56|—-17.10f 0.90 2.64
1.0 0 |0.905]|-3.06

» S - - =i o . = _ "
v=v-v, ,wherc v; =inclastic displacement= v __ —1.2in;

** k = 0 whilc frame is yiclding,



Displacement v, in

Numerical Example Taken from Clough and Penzien (2003)

3.0
Yielding phase
Static displacement /d // Elastoplastic response
iy /
/-
2.0 k \ Hrr” TN \
Y
/~ [ —\\\ / ’ 1
/ RS \
/’ [N .
1 0 7 < A
/ \\ \ \(P
/ = elasti RN . U; = inelastic
! Ve = € a501C S~o ‘ displacement
/ limit ~d_
// l ~. o l
0 =
\‘w._\\\

\. Elastic response

—-1.0 B S

0 0.2 0.4 0.6 0.8 1.0

Time, sec

Comparison of elastoplastic with elastic response




Thank you




