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Response to 

General Dynamic Loading

Duhamel’s Integral

(Convolution Integral)

Step-by-step Direct Integration 

Methods

• Based on the principle of 

superposition (It considers the 

general dynamic loading as a series 

of short impulses).

• Applicable only to linear systems

• Based on the direct numerical 

integration of the governing 

equation of motion in incremental 

form.

• Applicable to linear and nonlinear 

systems
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Duhamel’s Integral
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Duhamel’s Integral

 A general dynamic loading  = 

A series of short Impulses 

 Each impulse produce its 

own (impulse) response 

 The sum of these impulse 

responses = the response to 

the dynamic loading

𝑒−𝜉 𝜔 (𝑡−𝜏)
𝑝 𝑑𝜏

𝑚 𝜔𝐷
sin 𝜔𝐷 𝑡 − 𝜏

𝑡

𝑡

𝜏
𝑑𝜏

𝑑𝑢

0

0

𝑝

𝑝

(𝜏)

(𝑡)

(𝜏)

(𝑡)
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Duhamel’s Integral

Let 𝑑𝑢 is the response of a linear dynamic system at time 𝑡 due to impulse 𝑝 𝑑𝜏 at

time 𝜏.

𝑑𝑢 = 𝑝 𝑑𝜏 . ℎ

Where

………. (1)

(𝑡; 𝜏)

(𝑡; 𝜏)

(𝜏)

(𝜏) (𝑡 − 𝜏)

0

ℎ =  
𝑒−𝜉𝜔 𝑡−𝜏

𝑚 𝜔𝐷
sin 𝜔𝐷 𝑡 − 𝜏 , 𝑡 > 𝜏

, 𝑡 ≤ 𝜏

………. (2)(𝑡 − 𝜏)

ℎ = unit impulse response (or response to unit impulse applied at 𝑡 = 𝜏).(𝑡 − 𝜏)
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𝑑𝑢 = 𝑝 𝑑Δ𝑡 . ℎ(𝑡; 𝜏 = 0. Δ𝑡) (0. Δ𝑡) (𝑡 − 0. Δ𝑡)

𝑑𝑢 = 𝑝 𝑑Δ𝑡 . ℎ(𝑡; 𝜏 = 1. Δ𝑡) (1. Δ𝑡) (𝑡 − 1. Δ𝑡)

𝑑𝑢 = 𝑝 𝑑Δ𝑡 . ℎ(𝑡; 𝜏 = 2. Δ𝑡) (2. Δ𝑡) (𝑡 − 2. Δ𝑡)

𝑑𝑢 = 𝑝 𝑑Δ𝑡 . ℎ(𝑡; 𝜏 = 𝑖. Δ𝑡) (𝑖. Δ𝑡) (𝑡 − 𝑖. Δ𝑡)

𝑑𝑢 = 𝑝 𝑑𝜏 . ℎ(𝑡; 𝜏) (𝜏) (𝑡 − 𝜏)

𝑢 =  

𝜏= 0

𝜏= 𝑡

𝑝 . ℎ 𝑑𝜏(𝑡 − 𝜏)(𝑡) 𝜏
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Response to General Dynamic Loading - Duhamel’s Integral

By means of superposition the total responsive 𝑢 can be obtained by summing all

impulse responses developed during the loading history.

𝑢 =  

𝜏= 0

𝜏= 𝑡

𝑝 . ℎ 𝑑𝜏

The integration is called “Convolution Integral” in general theory of mathematics and

“Duhamel’s Integral” in structural dynamics.

………. (3)(𝑡 − 𝜏)(𝑡)

(𝑡)

𝜏
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Response to General Dynamic Loading - Duhamel’s Integral

In Equation (3), it is assumed that the structure is initially at-rest condition

That is 𝑢 = 0,  𝑢 = 0.

For other cases, additional free vibration response must be added to the solution:

𝑢 = 𝑒−𝜉 𝜔 𝑡
 𝑢 + 𝑢 𝜉 𝜔

𝜔𝐷
sin(𝜔𝐷𝑡) + 𝑢 cos(𝜔𝐷𝑡) +  

0

𝑡

𝑝 ℎ 𝑑𝜏

In the following investigation, the initial at-rest condition is assumed.

….. (4)(𝑡)

(0) (0)

(0) (0)
(0) 𝜏 (𝑡 − 𝜏)
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Response to General Dynamic Loading - Duhamel’s Integral

𝑒−𝜉 𝜔 𝑡 . 𝑒𝜉 𝜔 𝜏 sin 𝜔𝐷𝑡 cos(𝜔𝐷𝜏) − cos(𝜔𝐷𝑡) sin(𝜔𝐷𝜏)

𝑢 =
1

𝑚 𝜔𝐷
 

0

𝑡

𝑝 . 𝑒−𝜉𝜔𝑡𝑒𝜉𝜔𝜏 sin 𝜔𝐷𝑡 cos 𝜔𝐷𝜏) − cos 𝜔𝐷𝑡 sin 𝜔𝐷𝜏 𝑑𝜏

Therefore,

(𝑡) 𝜏

𝑢 =
1

𝑚 𝜔𝐷
 

0

𝑡

𝑝 . 𝑒−𝜉 𝜔 𝑡−𝜏 sin 𝜔𝐷 𝑡 − 𝜏 𝑑𝜏(𝑡) 𝜏
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Response to General Dynamic Loading - Duhamel’s Integral

By rearranging the terms, we get

Where 

So we can write

𝑢 =
𝑒−𝜉𝜔𝑡

𝑚 𝜔𝐷
 

0

𝑡

𝑝 . 𝑒𝜉𝜔𝜏 cos 𝜔𝐷𝜏 𝑑𝜏 sin 𝜔𝐷𝑡 −
𝑒−𝜉𝜔𝑡

𝑚 𝜔𝐷
 

0

𝑡

𝑝 . 𝑒𝜉𝜔𝜏 sin 𝜔𝐷𝜏 𝑑𝜏 cos 𝜔𝐷𝑡𝜏 𝜏𝑡

𝑢 = 𝐴 sin𝜔𝐷𝑡 − 𝐵 cos𝜔𝐷𝑡𝑡 𝑡 𝑡

𝐴 =
𝑒−𝜉𝜔𝑡

𝑚 𝜔𝐷
 
0

𝑡

𝑝 . 𝑒𝜉𝜔𝜏. cos 𝜔𝐷𝜏 𝑑𝜏

𝐵 =
𝑒−𝜉𝜔𝑡

𝑚 𝜔𝐷
 
0

𝑡

𝑝 . 𝑒𝜉𝜔𝜏. sin 𝜔𝐷𝜏 𝑑𝜏

𝜏

𝜏

𝑡

𝑡
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Response to General Dynamic Loading - Duhamel’s Integral

The terms in parenthesis for (both damped and undamped cases) need “numerical integration”.

For undamped case,

𝐴 =
1

𝑚 𝜔
 
0

𝑡

𝑝 . cos(𝜔 𝜏) 𝑑𝜏

𝐵 =
1

𝑚 𝜔
 
0

𝑡

𝑝 . sin(𝜔 𝜏) 𝑑𝜏

𝑡

𝑡

𝜏

𝜏
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Numerical Integration

Simple Summation:

 
0

𝑡

𝑓 𝑑 𝜏 ≅ Δ𝜏 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 +⋯𝑓𝑁−1

Where 𝑓𝑖 = 𝑓 ,  and Δ𝜏 = 𝑡/𝑁
𝑓

Δ𝜏

𝜏
𝑡

𝜏

(𝜏 = 𝑖. Δ𝜏)
𝜏
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Numerical Integration

Trapezoidal Rule:

 
0

𝑡

𝑓 𝑑 𝜏 ≅
Δ𝜏

2
𝑓0 + 2𝑓1 + 2𝑓2 + 2𝑓3 +⋯2𝑓𝑁−1 + 𝑓𝑁

Where 𝑓𝑖 = 𝑓 , and Δ𝜏 = 𝑡/𝑁 𝑓𝑖 + 𝑓𝑖+1
2

. Δ𝜏
𝑓

𝜏

𝜏

𝜏

(𝑖. Δ𝜏)
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Solving Duhamel’s Integral using Numerical Integration

• The integral 𝐴𝑁 can now be obtained 

approximately by summing the ordinates, after 

multiplying by weighting actors that depend on the 

numerical integration scheme being used.

Source: Clough and Penzien (2003)

• For example, consider the numerical integration of 

a function 𝑦 = 𝑝 cos𝜔𝜏 as required to find 

𝐴 in Duhamel’s Integral. 

• For convenience of numerical calculation, the 

function 𝑦 is evaluated at equal time increments 

Δ𝜏 as shown in Figure. 

𝜏𝜏

𝜏

𝑡
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Solving Duhamel’s Integral using Numerical Integration

Simple summation:

𝐴𝑁 =
Δ𝜏

𝑚 𝜔
𝑦0 + 𝑦1 + 𝑦2 +⋯+ 𝑦𝑁−1

Trapezoidal rule:

𝐴𝑁 =
Δ𝜏

2 𝑚 𝜔
[𝑦0 + 2𝑦1 + 2𝑦2 +⋯+ 2𝑦𝑁−1 + 𝑦𝑁]

Simpson’s rule:

𝐴𝑁 =
Δ𝜏

3 𝑚 𝜔
[𝑦0 + 4𝑦1 + 2𝑦2 +⋯+ 4𝑦𝑁−1 + 𝑦𝑁]

Undamped Systems

Source: Clough and Penzien (2003)
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Simple summation:

𝐴𝑁 = 𝐴𝑁−1 +
Δ𝜏

𝑚 𝜔
𝑦𝑁−1

Trapezoidal rule:

𝐴𝑁 = 𝐴𝑁−1 +
Δ𝜏

2 𝑚 𝜔
𝑦𝑁−1 + 𝑦𝑁

Simpson’s rule:

𝐴𝑁 = 𝐴𝑁−1 +
Δ𝜏

3 𝑚 𝜔
𝑦𝑁−2 + 4𝑦𝑁−1 + 𝑦𝑁

It is more efficient to write these equations in their recursive forms:

𝑁 = 1, 2, 3, …

𝑁 = 2, 4, 6, …

𝑁 = 1, 2, 3, …

Source: Clough and Penzien (2003)

Such that 𝐴0 = 0
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Simple summation:

𝐴𝑁 = 𝑒−𝜉 𝜔 Δ𝜏 𝐴𝑁−1+
Δ𝜏

𝑚 𝜔𝐷
𝑦𝑁−1 𝑒−𝜉 𝜔 Δ𝜏

Trapezoidal rule:

𝐴𝑁 = 𝑒−𝜉 𝜔 Δ𝜏 𝐴𝑁−1 +
Δ𝜏

2 𝑚 𝜔𝐷
𝑦𝑁−1 𝑒

−𝜉 𝜔 Δ𝜏 + 𝑦𝑁

Simpson’s rule:

𝐴𝑁 = 𝑒−2 𝜉 𝜔 Δ𝜏 𝐴𝑁−1 +
Δ𝜏

3 𝑚 𝜔𝐷
𝑦𝑁−2 𝑒

−2 𝜉 𝜔 Δ𝜏+ 4 𝑦𝑁−1 𝑒
−𝜉 𝜔 Δ𝜏 + 𝑦𝑁

Solving Duhamel’s Integral using Numerical Integration

Damped Systems

𝑁 = 1, 2, 3, …

𝑁 = 2, 4, 6, …

𝑁 = 1, 2, 3, …
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Solving Duhamel’s Integral using Numerical Integration

• The evaluation of 𝐵 can be carried out in the same manner, however, in doing so, the

definition of 𝑦 must be changed to 𝑦 = 𝑝 sin(𝜔𝜏).

• Having calculated the values of 𝐴𝑁 and 𝐵𝑁 for successive values of 𝑁 , the

corresponding values of response 𝑢𝑁 are obtained using

𝑢𝑁 = 𝐴𝑁 sin 𝜔𝑡𝑁 − 𝐵𝑁 cos 𝜔𝑡𝑁

Source: Clough and Penzien (2003)

𝜏𝜏

𝑡

𝜏
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Numerical Example
Taken from Clough and Penzien (2003)

A water tower subjected to blast load

The unit of force is kips.

1.0 kip = 1000 lbs

The unit of displacement is ft.

The unit of velocity is ft/s.

The unit of acceleration is ft/s2.

1.0 g = 32.2 ft/s2

The unit of mass is the unit of force 
divided by the unit of acceleration.

Kip- s2 /ft

The unit of stiffness is the unit of force 
divided by the unit of displacement.

Kip/ft
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Numerical Example
Taken from Clough and Penzien (2003)
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Numerical Example
Taken from Clough and Penzien (2003)
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Duhamel’s Integral

• The concept of convolution integral will be used again later when we study the response

of structures to random loadings from statistical view point (random vibration theory).

• The Convolution Integral is derived based on the principle of superposition. So, it is

applicable only for the response analysis of “linear systems”.
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Applications

Evaluation of Structural Response to Earthquake Ground Motions

𝑚

 𝑢𝑔(𝑡)(𝑡)

𝑚
𝑑2𝑢 𝑡

𝑑𝑡2
+ 𝑐

𝑑𝑢 𝑡

𝑑𝑡
+ 𝑘 𝑢 𝑡 = −𝑚

𝑑2𝑢𝑔 𝑡

𝑑𝑡2
(𝑡) (𝑡) (𝑡)

(𝑡)

 𝑢𝑔(𝑡)(𝑡)
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Applications

Evaluation of Response Spectrum of 

Earthquake Ground Motions

Computation of deformation (or 

displacement) response spectrum
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Step-by-step Direct Integration Method

Or Time-stepping Method
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Step-by-step Direct Integration Method

 General Dynamic loadings

 Linear & Nonlinear Structures

 In some important structural dynamic problems, the responses of structures are in

nonlinear range.

For example, the response of a structure subjected to a major earthquake.
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𝑢
𝑓𝑠

𝑓𝑠

𝑢

𝑓𝑠 = 𝑘 𝑢

Linear 

Elastic

Steel Column

Elasto-plastic

Column

𝑓𝑠

𝑢

𝑓𝑠

𝑢

RC Column

Hysteretic 

Response

Concrete Cracking

Rebar Yielding

Nonlinear System 

Nonlinear Equation → Duhamel’s Integral is 

not applicable
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Step-by-step Integration Procedure

Where

𝑓𝐼 = 𝑚  𝑢

𝑓𝐷 ≠ 𝑐  𝑢

Damping force may not be a linear function of velocity  𝑢 .

𝑓𝑠 ≠ 𝑘 𝑢

Restoring force is a nonlinear function of displacement 𝑢 .

Consider the dynamic equilibrium (in scalar form) of a nonlinear structure at time 𝑡:

𝑓𝐼 + 𝑓𝐷 + 𝑓𝑠 = 𝑝 ………. (1)𝑡 𝑡 𝑡 𝑡

𝑝 is an arbitrary/general 

loading.

𝑝

𝑡

𝑡

𝑡

𝑡 𝑡

𝑡𝑡

𝑡

𝑡

𝑡

𝑡
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Step-by-step Integration Procedure

At a small time Δ𝑡 later:

𝑓𝐼 + 𝑓𝐷 + 𝑓𝑠 = 𝑝

Subtract Equation (2) by Equation (1), we get

Δ𝑓𝐼 + Δ𝑓𝐷 + Δ𝑓𝑠 = Δ 𝑝

………. (2)

………. (3)

𝑡 + ∆𝑡𝑡 + ∆𝑡𝑡 + ∆𝑡 𝑡 + ∆𝑡

𝑡 𝑡 𝑡 𝑡

Where Δ𝑓𝐼 = 𝑓𝐼 − 𝑓𝐼 = 𝑚 Δ  𝑢

Δ𝑓𝐷 = 𝑓𝐷 − 𝑓𝐷 ≅
𝑑𝑓𝐷
𝑑  𝑢

𝑡

. Δ  𝑢 = 𝑐 . Δ  𝑢

Δ𝑓𝑠 = 𝑓𝑠 − 𝑓𝑠 ≅
𝑑𝑓𝑠
𝑑𝑢

𝑡

. Δ𝑢 = 𝑘 . Δ𝑢

𝑡 + ∆𝑡

𝑡 + ∆𝑡𝑡

𝑡 + ∆𝑡

𝑡 𝑡

𝑡 𝑡 𝑡 𝑡𝑡

𝑡 𝑡 𝑡 𝑡𝑡

𝑓𝐼 + 𝑓𝐷 + 𝑓𝑠 = 𝑝𝑡 𝑡𝑡 𝑡 ………. (1)
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Slope

=
𝑑𝑓𝑠
𝑑𝑢

𝑡

= 𝑘

𝑓𝑠

𝑢

𝑢 𝑢

Δ𝑢

Δ𝑓𝑠

𝑓𝑠

𝑓𝑠

𝑡

𝑡 + ∆𝑡𝑡

𝑡

𝑡

𝑡 + ∆𝑡

𝑡

𝑡 𝑡 + Δ𝑡
Time

𝑝

𝑝 Δ𝑝 = 𝑝 − 𝑝
𝑡 + ∆𝑡

𝑡
(𝑡 + Δ𝑡) 𝑡𝑡

Δ𝑓𝑠 = 𝑓𝑠 − 𝑓𝑠

≅
𝑑𝑓𝑠
𝑑𝑢

𝑡

. Δ𝑢

≅ 𝑘 . Δ𝑢

𝑡 + ∆𝑡𝑡 𝑡

𝑡

𝑡
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Step-by-step Integration Procedure

We have introduced the following two approximations:

Δ𝑓𝐷 = 𝑐 . Δ  𝑢

Δ𝑓𝑠 = 𝑘 . Δ𝑢

They are equivalent to the assumption that the damping force

and restoring forces are linear within 𝑡 and 𝑡 + Δ𝑡.

“Piecewise Linear Approximation of Structural System”

𝑡 𝑡

𝑡 𝑡

𝑡

𝑡

=
𝑑𝑓𝑠
𝑑𝑢

𝑡
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Step-by-step Integration Procedure

Introducing an assumption that “the acceleration response varies linearly during each

time increment”.

This yields quadratic and cubic variations of velocity and displacement, respectively.

The incremental equation of motion (Equation 3) becomes,

𝑚 Δ  𝑢 + 𝑐 Δ  𝑢 + 𝑘 Δ𝑢 = Δ𝑝𝑡𝑡 𝑡 𝑡 𝑡 𝑡 ………. (4)



34

 𝑢 =  𝑢 +  𝑢 . 𝜏 +
Δ  𝑢

∆𝑡
.
𝜏2

2

 𝑢 =  𝑢 +  
0

𝜏

 𝑢 𝑑𝜏

∆  𝑢

∆𝑡

 𝑢

𝑡 𝑡 + ∆𝑡
𝜏

 𝑢
 𝑢 + ∆  𝑢

𝑢 = 𝑢 + 
0

𝜏

 𝑢 𝑑𝜏

𝑢 = 𝑢 +  𝑢 . 𝜏 +  𝑢 .
𝜏2

2
+
Δ  𝑢

∆𝑡
.
𝜏3

6

 𝑢 =  𝑢 +
Δ  𝑢

∆𝑡
. 𝜏

 𝑢 + Δ  𝑢

∆𝑢

𝑢

𝑢 + ∆𝑢

………. (5)

………. (6)

(7)𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

𝑡
𝑡𝜏

𝜏

𝜏

𝜏

𝜏

𝜏𝑡

𝜏𝑡

𝜏

𝜏

𝑡 𝑡
𝑡

𝑡 𝑡 𝑡
𝑡

“the acceleration response

varies linearly during each

time increment”.
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Step-by-step Integration Procedure

At 𝜏 = ∆𝑡, the above equations for velocity and displacement becomes,

∆  𝑢 =  𝑢 . ∆𝑡 +
Δ  𝑢

∆𝑡
.
∆𝑡2

2

∆𝑢 =  𝑢 . ∆𝑡 +  𝑢 .
∆𝑡2

2
+
Δ  𝑢

∆𝑡
.
∆𝑡3

6

………. (8)

………. (9)

𝑡𝑡
𝑡

𝑡
𝑡 𝑡 𝑡

Re-writing the above two equations in terms of Δ𝑢 :

∆  𝑢 =
6

∆𝑡2
. ∆𝑢 −

6

∆𝑡
.  𝑢 − 3  𝑢

Δ  𝑢 =
3

∆𝑡
. ∆𝑢 − 3  𝑢 −

∆𝑡

2
.  𝑢

Equations (10) and (11) are derived from the “linear acceleration assumption”.

………. (10)

………. (11)𝑡 𝑡 𝑡

𝑡 𝑡 𝑡

𝑡

𝑡

𝑡
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Step-by-step Integration Procedure

Introducing Equations (10) and (11) into the incremental form of governing equation of

motion (Equation (4)), we obtain

𝑚
6

∆𝑡2
. ∆𝑢 −

6

∆𝑡
.  𝑢 − 3  𝑢 + 𝑐

3

∆𝑡
. ∆𝑢 − 3  𝑢 −

∆𝑡

2
.  𝑢 + 𝑘 . ∆𝑢 = ∆𝑝𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

Re-writing the above equation, we get,

 𝑘 . ∆𝑢 = ∆  𝑝

Where

 𝑘 = 𝑘 +
6

∆𝑡2
. 𝑚 +

3

∆𝑡
. 𝑐

∆  𝑝 = ∆𝑝 +𝑚
6

∆𝑡
.  𝑢 + 3  𝑢 + 𝑐 3  𝑢 +

∆𝑡

2
.  𝑢

𝑡 𝑡 𝑡

𝑡 𝑡 𝑡

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

………. (12)
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Step-by-step Integration Procedure

Let’s assume that the calculation is made up to Time = 𝑡 and we are going to proceed to the

next time stop, 𝑡 + ∆𝑡.

Hence, 𝑢 ,  𝑢 ,  𝑢 are known, and 𝑘 , 𝑐 , 𝑚 and ∆𝑝 are also known.

∆𝑢 can be determined. ∆  𝑢 and ∆  𝑢 can be derived from ∆𝑢 by Eqs (11) and (10).

𝑡 𝑡 𝑡𝑡 𝑡 𝑡

 𝑘 . ∆𝑢 = ∆  𝑝

Where

 𝑘 = 𝑘 +
6

∆𝑡2
. 𝑚 +

3

∆𝑡
. 𝑐

∆  𝑝 = ∆𝑝 +𝑚
6

∆𝑡
.  𝑢 + 3  𝑢 + 𝑐 3  𝑢 +

∆𝑡

2
.  𝑢

𝑡 𝑡 𝑡

𝑡 𝑡 𝑡

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

𝑡 𝑡𝑡𝑡

………. (12)
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Step-by-step Integration Procedure

Note:

Two assumptions are used in this step-by-step calculation.

1) Within 𝑡, 𝑡 + Δ𝑡 , Δ𝑓𝐷 = 𝑐 . Δ  𝑢 and Δ𝑓𝑠 = 𝑘 . Δ𝑢

2) Within {𝑡, 𝑡 + Δ𝑡}, acceleration varies linearly

These assumptions are justified only when Δ𝑡 is sufficiently small, small Δ𝑡  small error.

Although the error in each step is small, the error can accumulate and becomes significant 

when the number of steps is large.

The accumulation should be avoided by imposing the dynamic equilibrium condition at each 

time step.

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡
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𝑢(𝑡) and  𝑢(𝑡) are known

Evaluate
𝑘 𝑡 =

𝑑𝑓𝑠
𝑑𝑢

𝑡

,
𝑓𝑠 𝑡 = 𝑓𝑠 𝑢(𝑡)

 𝑢 𝑡 =
1

𝑚
. 𝑝 𝑡 − 𝑓𝐷 𝑡 − 𝑓𝑠 𝑡 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1)

 𝑘 𝑡 = 𝑘 𝑡 +
6

∆𝑡2
. 𝑚 +

3

∆𝑡
. 𝑐 𝑡

∆  𝑝 𝑡 = ∆𝑝 𝑡 + 𝑚
6

∆𝑡
.  𝑢 𝑡 + 3  𝑢 𝑡 + 𝑐 𝑡 3  𝑢 𝑡 +

∆𝑡

2
.  𝑢 𝑡

∆𝑢 𝑡 = ∆  𝑝 𝑡 / 𝑘 𝑡 Equation (12)

∆  𝑢 𝑡 =
3

∆𝑡
∆𝑢 𝑡 − 3  𝑢 𝑡 −

∆𝑡

2
 𝑢 𝑡 Equation (11)

 𝑢 𝑡 + ∆𝑡 =  𝑢 𝑡 + ∆  𝑢 𝑡

𝑢 𝑡 + ∆𝑡 = 𝑢 𝑡 + ∆𝑢 𝑡

𝑐 𝑡 =
𝑑𝑓𝐷
𝑑  𝑢

𝑡

,
𝑓𝐷 𝑡 = 𝑓𝐷  𝑢(𝑡)

Time = 𝒕

Impose dynamic 

equilibrium condition

Time = 𝒕 + ∆𝒕

Calculation 
flow chart
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Additional Notes

1. Response of any SDF system with any prescribed nonlinear properties can be evaluated

by “step-by-step integration”.

2. Response of any linear SDF system can also be evaluated by the step-by-step

integration.

3. To determine Δ𝑡, we should consider :

 The rate of variation of the applied loading 𝑝

 The nonlinearity of damping and stiffness properties.

 The natural period of structure (𝑇)

(𝑡)
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Additional Notes

Rule of thumb:

Δ𝑡/𝑇 ≤ 1/10

My suggestion:

Δ𝑡/𝑇 ≤ 1/30

The choice of Δ𝑡 also depends on the nonlinear properties of damping and stiffness

4. The step-by-step integration technique will be extended for the calculation of responses 

of nonlinear MDF systems later.

More attention will be paid on the accumulation of error – as it is a major factor in the 

determination of Δ𝑡.

Need a very 

small ∆𝑡

𝑢

𝑓𝑠
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Numerical Example
Taken from Clough and Penzien (2003)

𝑢(𝑡)

An elastoplastic frame 
and dynamic loading
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Numerical Example Taken from Clough and Penzien (2003)



44Comparison of elastoplastic with elastic response

Numerical Example Taken from Clough and Penzien (2003)



Thank you


