CE 809 - Structural Dynamics

Lecture 4: Response of SDF Systems to Periodic Loading
Semester - Fall 2020

Dr. Fawad A. Najam

Department of Structural Engineering
NUST Institute of Civil Engineering (NICE)
National University of Sciences and Technology (NUST)
H-12 Islamabad, Pakistan
Cell: 92-334-5192533, Email: fawad@nice.nust.edu.pk

Prof. Dr. Pennung Warnitchai

Head, Department of Civil and Infrastructure Engineering School of Engineering and Technology (SET)
Asian Institute of Technology (AIT)
Bangkok, Thailand

Periodic Loading

A SDF system is subjected to a "periodic force" $p(t)$

- A periodic function is one in which the portion defined over a time T repeats itself indefinitely as shown in the figure.
- Many forces are periodic or nearly periodic. For example, under certain conditions, propeller forces on a ship, wave loading on an offshore platform, and wind forces induced by vortex shedding on tall, slender structures are nearly periodic.

Fourier Series Representation of a Periodic Function

Any arbitrary periodic functions can be represented in terms of a summation of simple sine and cosine functions.

$$
\begin{equation*}
p(t)=a_{o}+\sum_{n=1}^{\infty} a_{n} \cos (n \bar{\omega} t)+\sum_{n=1}^{\infty} b_{n} \sin (n \bar{\omega} t) \tag{1}
\end{equation*}
$$

Where $\bar{\omega}=2 \pi / T$ and $a_{o}, a_{1}, a_{2}, a_{3}, \ldots, b_{1}, b_{2}, b_{3}, \ldots$ are called Fourier coefficients.

The right hand side of the above expression is called "Fourier series", i.e. a periodic function can be separated (decomposed) into its harmonic components in the Fourier series.

Fourier Decomposition

- This concept called Fourier decomposition was first proposed by Jean-Baptiste Joseph Fourier, a French physicist and mathematician (1768-1830).
- The beginnings on Fourier series can also be found in works by Leonhard Euler and by Daniel Bernoulli, but it was Fourier who employed them in a systematic and general manner in his main work, "Théorie analytique de la chaleur (Analytic Theory of Heat, Paris, 1822)".
- It is a very powerful mathematical concept.

Refer to "Advanced Engineering Mathematics" by Erwin Kreszig, 10 ${ }^{\text {th }}$ Edition).

Joseph Fourier (1768-1830)

Fourier Series

If $p(t)$ is given, the coefficients a_{n} and b_{n} can be determined by simple integrations as follows.

$$
\int_{t=0}^{t=T} p(t) d t=\int_{t=0}^{t=T}\left[a_{o}+\sum_{n=1}^{\infty} a_{n} \cos (n \bar{\omega} t)+\sum_{n=1}^{\infty} b_{n} \sin (n \bar{\omega} t)\right] d t=a_{o} T
$$

$$
\begin{equation*}
a_{o}=\frac{1}{T} \int_{t=0}^{t=T} p(t) d t \tag{2}
\end{equation*}
$$

Fourier Series

$$
\begin{aligned}
& \int_{t=0}^{t=T} p(t) \cos (m \bar{\omega} t) d t \\
& =\int_{t=0}^{t=T}\left[a_{o}+\sum_{\mathrm{n}=1}^{\infty} a_{n} \cos (n \bar{\omega} t)+\sum_{\mathrm{n}=1}^{\infty} b_{n} \sin (n \bar{\omega} t)\right] \cos (m \bar{\omega} t) d t=\frac{a_{m} T}{2}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
a_{m}=\frac{2}{T} \int_{t=0}^{t=T} p(t) \cos (m \bar{\omega} t) d t \tag{3}
\end{equation*}
$$

Similarly, it can be shown that,

$$
\begin{equation*}
b_{m}=\frac{2}{T} \int_{t=0}^{t=T} p(t) \sin (m \bar{\omega} t) d t \tag{4}
\end{equation*}
$$

Example

Consider a periodic square function as shown below.

$$
p(t)=\left\{\begin{array}{cc}
k & \text { for } 0<t<\pi \\
-k & \text { for } \pi<t<2 \pi
\end{array}\right\}
$$

Example

Conducting the integrations as shown be the equations (2), (3) and (4), we obtain,

$$
\begin{aligned}
& a_{o}=0 \\
& a_{n}=0
\end{aligned}
$$

$$
b_{n}=\frac{2 k}{n \pi}(1-\cos (n \pi)) \quad n=1,2,3, \ldots
$$

That is,

$$
b_{1}=\frac{4 k}{\pi}, \quad b_{2}=0, \quad b_{3}=\frac{4 k}{3 \pi}, \quad b_{4}=0, \quad b_{5}=\frac{4 k}{5 \pi}, \ldots
$$

$$
S_{1}=b_{1} \sin (\bar{\omega} t)
$$

$$
S_{3}=b_{1} \sin (\bar{\omega} t)+b_{3} \sin (3 \bar{\omega} t)
$$

$$
S_{5}=b_{1} \sin (\bar{\omega} t)+b_{3} \sin (3 \bar{\omega} t)+b_{5} \sin (5 \bar{\omega} t)
$$

The first three partial sums of the corresponding Fourier series of the given square periodic function

Example

The series coverage quickly to the square function.

Theoretically, an infinite number of terms are required for the Fourier series to converge to $p(t)$.

In practice, however, a few terms are sufficient for good convergence.

Therefore, in many practical applications, it is not necessary to evaluate ∞ series. Only a finite series is good enough.

$$
p(t) \cong \sum_{n=1}^{N} b_{n} \sin (n \bar{\omega} t) \quad \text { Where } \mathrm{N} \text { is finite, not } \infty
$$

Response to a Periodic Loading

| Response to a
 periodic loading |
| :---: | | Response to the Fourier |
| :---: |
| series of the loading |

Superposition
the sum of the responses to each
sine and cosine loadings in the series

Response to a Periodic Loading

Superposition

Let $u_{1}(t)$ be response to $p_{1}(t)$ loading i.e.

$$
m \ddot{u}_{1}(t)+c \dot{u}_{1}(t)+k u_{1}(t)=p_{1}(t)
$$

And $u_{2}(t)$ be the response to $p_{2}(t)$ i.e.

$$
m \ddot{u}_{2}(t)+c \dot{u_{2}}(t)+k u_{2}(t)=p_{2}(t)
$$

Then $u_{1}(t)+u_{2}(t)$ is the response to $p_{1}(t)+p_{2}(t)$.

$$
m\left(\ddot{u}_{1}(t)+\ddot{u}_{2}(t)\right)+c\left(\dot{u}_{1}(t)+\dot{u}_{2}(t)\right)+k\left(u_{1}(t)+u_{2}(t)\right)=p_{1}(t)+p_{2}(t)
$$

Steady-state Response to a Periodic Loading

$$
\begin{gathered}
p(t)=a_{o}+\sum_{n=1}^{\infty} a_{n} \cos (n \bar{\omega} t)+\sum_{n=1}^{\infty} b_{n} \sin (n \bar{\omega} t) \\
u_{o a}=\frac{a_{o}}{k}
\end{gathered}
$$

Define $\beta_{n}=n \bar{\omega} / \omega$ and use the result obtained from the previous section.

$$
\begin{aligned}
& u_{b n}(t)=\text { steady-state response to } b_{n} \sin (n \bar{\omega} t) \\
& u_{b n}(t)=\frac{b_{n}}{k} \frac{1}{\left(1-\beta_{n}^{2}\right)^{2}+\left(2 \xi \beta_{n}\right)^{2}}\left\{\left(1-\beta_{n}^{2}\right) \sin (n \bar{\omega} t)-2 \xi \beta_{n} \cos (n \bar{\omega} t)\right\}
\end{aligned}
$$

Steady-state Response to a Periodic Loading

$$
u_{b n}(t)=\frac{b_{n}}{k} \frac{1}{\left(1-\beta_{n}^{2}\right)^{2}+\left(2 \xi \beta_{n}\right)^{2}}\left\{\left(1-\beta_{n}^{2}\right) \sin (n \bar{\omega} t)-2 \xi \beta_{n} \cos (n \bar{\omega} t)\right\}
$$

$$
u_{a n}(t)=\frac{a_{n}}{k} \frac{1}{\left(1-\beta_{n}^{2}\right)^{2}+\left(2 \xi \beta_{n}\right)^{2}}\left\{2 \xi \beta_{n} \sin (n \bar{\omega} t)+\left(1-\beta_{n}^{2}\right) \cos (n \bar{\omega} t)\right\}
$$

Steady-state Response to a Periodic Loading

The combined response would be,

$$
\begin{aligned}
u(t) & =\frac{1}{k}\left[a^{0}\right. \\
& +\sum_{n=1}^{\infty} \frac{1}{\left(1-\beta_{n}^{2}\right)^{2}+\left(2 \xi \beta_{n}\right)^{2}}\left\{\left(a_{n} 2 \xi \beta_{n}+b_{n}\left(1-\beta_{n}{ }^{2}\right)\right) \sin (n \bar{\omega} t)\right. \\
& \left.+\left(a_{n}\left(1-{\beta_{n}}^{2}\right)-b_{n} 2 \xi \beta_{n}\right) \cos (n \bar{\omega} t)\right\}
\end{aligned}
$$

Example

Response of an SDF structure with $\omega=5$ $\mathrm{rad} / \mathrm{sec}$ when subjected to a periodic loading of triangular waveform ($\bar{\omega}=1 \mathrm{rad} / \mathrm{sec}$)

Inputs: $\quad \bar{\omega}=1, \quad \omega=5 \mathrm{rad} / \mathrm{sec}$
Fourier Series:

$$
\beta_{1}=\frac{\bar{\omega}}{\omega}=0.2, \quad \beta_{3}=3 \frac{\bar{\omega}}{\omega}=0.6, \quad \beta_{5}=5 \frac{\bar{\omega}}{\omega}=1,
$$

For β_{5} term, the response will be dominated by the resonance response at frequency $5 \bar{\omega}$.

An example steady state response of an input triangular force

Appendix

Fourier Series of some Common Periodic Functions

Function:

Fourier series:

$$
f(x)=\frac{4 a}{\pi}\left(\frac{\sin x}{1}+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\cdots\right)
$$

Function:

$$
f(x)=\left\{\begin{array}{cc}
a & \text { for } d<x<\pi-d \\
-a & \text { for } \pi+d<x<2 \pi-d
\end{array}\right.
$$

Fourier series:

$$
f(x)=\frac{4 a}{\pi}\left(\cos d \sin x+\frac{1}{3} \cos 3 d \sin 3 x+\frac{1}{5} \cos 5 d \sin 5 x+\cdots\right)
$$

Function:

Fourier series:

$$
f(x)=\frac{2 a}{\pi}\left(\frac{\pi-d}{2}-\frac{\sin (\pi-d)}{1} \cos x+\frac{\sin 2(\pi-d)}{2} \cos 2 x-\frac{\sin 3(\pi-d)}{3}+\cdots\right)
$$

Function:

$$
f(x)=\left\{\begin{array}{cc}
\frac{2 a x}{\pi} & \text { for }-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
\frac{2 a(\pi-x)}{\pi} & \text { for } \frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}
\end{array}\right.
$$

Fourier series:

$$
f(x)=\frac{8 a}{\pi^{2}}\left(\frac{\sin x}{1}-\frac{\sin 3 x}{3^{2}}+\frac{\sin 5 x}{5^{2}}-\cdots\right)
$$

Function:

$$
f(x)=\left\{\begin{array}{cc}
\frac{a x}{\pi} & \text { for } 0 \leq x \leq \pi \\
\frac{a(2 \pi-x)}{\pi} & \text { for } \pi \leq x \leq 2 \pi
\end{array}\right.
$$

Fourier series:

$$
f(x)=\frac{a}{2}-\frac{4 a}{\pi^{2}}\left(\frac{\cos x}{1}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\cdots\right)
$$

Function:

Fourier series:

$$
f(x)=\frac{2 a}{\pi}\left(\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\cdots\right)
$$

Function:

$$
f(x)= \begin{cases}\frac{a x}{\pi} & \text { for } 0 \leq x \leq \pi \\ 0 & \text { for } \pi \leq x \leq 2 \pi\end{cases}
$$

Fourier series:

$$
f(x)=\frac{a}{4}-\frac{2 a}{\pi^{2}}\left(\frac{\cos x}{1}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\cdots\right)+\frac{a}{\pi}\left(\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\cdots\right)
$$

Function:

$$
f(x)=\left\{\begin{array}{l}
\frac{a x}{2 \pi} \quad \text { for } 0<x<2 \pi
\end{array}\right.
$$

Fourier series:

$$
f(x)=\frac{a}{2}-\frac{a}{\pi}\left(\frac{\sin x}{1}+\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}+\cdots\right)
$$

Function:

$$
\begin{aligned}
& f(x) \\
& =\left\{\begin{array}{cc}
\frac{a x}{d} & -b \leq x \leq b \\
a & b \leq x \leq \pi-b \\
\frac{a(\pi-x)}{d} & \text { for } \pi-b<x \leq \pi+b \\
-a & \text { for } \pi+b<x \leq 2 \pi-b
\end{array}\right.
\end{aligned}
$$

Fourier series:

$$
f(x)=?
$$

Find yourself

Function:

$$
f(x)=\left\{\begin{array}{cc}
a \sin x & \text { for } 0 \leq x \leq \pi \\
0 & \text { for } \pi \leq x \leq 2 \pi
\end{array}\right.
$$

Fourier series:

$$
f(x)=\frac{2 a}{\pi}\left(\frac{1}{2}+\frac{\pi \sin x}{4}-\frac{\cos 2 x}{1 \times 3}-\frac{\cos 4 x}{3 \times 5}-\frac{\cos 6 x}{5 \times 7}-\cdots\right)
$$

Function:

$$
f(x)=\left\{\begin{array}{cc}
a \cos x & \text { for } 0<x<\pi \\
-a \cos x & \text { for }-\pi<x<0
\end{array}\right.
$$

Fourier series:

$$
f(x)=\frac{8 a}{\pi}\left(\frac{\sin 2 x}{1 \times 3}+\frac{2 \sin 4 x}{3 \times 5}+\frac{3 \sin 6 x}{5 \times 7}+\cdots\right)
$$

Function:

$$
f(x)= \begin{cases}x^{2} & \text { for }-\pi \leq x \leq \pi\end{cases}
$$

Fourier series:

$$
f(x)=\frac{\pi^{2}}{3}-4\left(\frac{\cos x}{1}-\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}}-\cdots\right)
$$

Function:

Fourier series:

$$
f(x)=\frac{2 a}{\pi}-\frac{4 a}{\pi}\left(\frac{\cos 2 x}{1 \times 3}+\frac{\cos 4 x}{3 \times 5}+\frac{\cos 6 x}{5 \times 7}+\cdots\right)
$$

Thank you

