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Periodic Loading

A SDF system is subjected to a “periodic force” p(t)

P (t) / p) =p@i+T) T is the period of the periodic force.
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« A periodic function is one in which the portion defined over a time T repeats itself indefinitely
as shown in the figure.

N
~
¥

 Many forces are periodic or nearly periodic. For example, under certain conditions, propeller
forces on a ship, wave loading on an offshore platform, and wind forces induced by vortex
shedding on tall, slender structures are nearly periodic.



Fourier Series Representation of a Periodic Function

Any arbitrary periodic functions can be represented in terms of a summation of simple
sine and cosine functions.

p(t) = a, + z a,cos(nwt) + Z bysin(nwt)  -eeee. (1)
n=1 n=1

Where @ =2n/T and a,, a4, a,, as, ..., by, by, b3, ... are called Fourier coefficients.

The right hand side of the above expression is called “Fourier series”, i.e. a periodic function

can be separated (decomposed) into its harmonic components in the Fourier series.



Fourier Decomposition

« This concept called Fourier decomposition was first
proposed by Jean-Baptiste Joseph Fourier, a French
physicist and mathematician (1768 - 1830).

« The beginnings on Fourier series can also be found in
works by Leonhard Euler and by Daniel Bernoulli, but it
was Fourier who employed them in a systematic and
general manner in his main work, “Théorie analytique de
la chaleur (Analytic Theory of Heat, Paris, 1822)".

« Itis a very powerful mathematical concept.

Refer to “Advanced Engineering Mathematics” by Erwin Kreszig, 10" Edition).

Joseph Fourier (1768 - 1830)



Fourler Series

If p(t) is given, the coefficients a,, and b,, can be determined by simple integrations as

follows.

t=T t=T
f p(t) dt = j
t=0 t=0

a, + Z a,cos(nwt)+ z b, sin(n w t)] dt =a, T
n=1 n=1




Fouriler Series

t=T
J p(t) cos(mw t) dt
t

=0

t=T ® 00 .
= f a, + z a, cos(nwt) + z b, sin(n t)] cos(m t) dt = ’"T
t=0 — =
Therefore, 7 t=T
Am = Tf pi)ycos(mawt)dt | oo (3)
t=0

Similarly, it can be shown that,

2 t=T
b, = —f p)sin(mwt)dt | .......... (4)
T Je—o




Example

Consider a periodic square function as shown below.
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Example
Conducting the integrations as shown be the equations (2), (3) and (4), we obtain,
p(t) —0
Mk _k _k Go =
| . a, =0
Z t
p, = 2X (1 (nm)) 1,2,3
: - — cos\nrt n = ;;)"'OO
—k —k —k " onm
<27
That is, Al 4k 4k
blz?, b2=0, b3:§, b4:O, b5:§,
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51 — b1 Sin(ﬁ t)

S3 =bysin(wt) + by sin(3 wt)

Se = bysin(wt) + bysin(3wt) + bs sin(5 w t)

The first three partial sums of the corresponding

Fourier series of the given square periodic function
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Example

The series coverage quickly to the square function.

Theoretically, an infinite number of terms are required for the Fourier series to converge to p(t).

In practice, however, a few terms are sufficient for good convergence.

Therefore, in many practical applications, it is not necessary to evaluate oo series. Only a finite
series is good enough.

IR

N
p(t) Z b, sin(n w t) Where N is finite, not o
n=1



Response to a Periodic Loading

Response to a
periodic loading

Response to the Fourier
series of the loading

Superposition

|

the sum of the responses to each
sine and cosine loadings in the series




Response to a Periodic Loading
Superposition

Let u4(t) be response to p4(t) loading i.e.

muq(t) +cuy(t) +ku(t) =pi @)
And u, (t) be the response to p,(t) I.e.

m i, () + cuy(t) + ku,(t) = p,(t)
Then uq(t) + u,(t) is the response to p1(t) + p2(t).

m(ii () + i) + c( @) +uy@®) ) + k(u(®) +uy(®)) = p1(t) + p,o (B



Steady-state Response to a Periodic Loading

pt) = a, + 2 a,cos(nwt)+ z b, sin(n @ t)
n=1 n=1

aO
Mo =

Define 3,, = n @ /w and use the result obtained from the previous section.

Uy, (t) = steady-state response to b, sin(nwt)

b, 1
k'(1-5,2)" + @2 By)?

{(1- ,an) sin(nw t) —2 & Bpcos(nt)}

Upn(t) =




Steady-state Response to a Periodic Loading

b, 1
k'(1-5,2)" +@2¢&Bo)?

{(1 — [)’nz) sinnwt)—2¢& B, cos(nw t)}

Upp (D) =

a

- 2 Bysin(nwt) + (1—B,") cos(n @ t)
k(l—ﬁn2)2+(2§ﬁn)2{ [, sin(n w ( 19 )Cosna) }

Uagn (t) =




Steady-state Response to a Periodic Loading

The combined response would be,

wut) =

ol [l

1
(18,2 + (2 y)?

_|_

||M8,

{(an 2& 6, + bn(l — ﬁnz)) sin(n @ t)

+ (an(1 - 5n2) — by 2§ By) cos(n @ t)}



Example

A
Response of an SDF structure with w =5 2l 'n n 4
rad/sec when subjected to a periodic loading of i
: _ L« Output
triangular waveform (w = 1 rad/sec) -
Inputs: w = 1, w = 5 rad/sec - ’L
. - e I
Fourier Series: 0 -\\;r// o ¢
]
© 0.2 3 2 0.6 =5 “_ 1
ﬁl_z_ 1l 3 — 5_ U, ﬁs_ w_ )
For 5 term, the response will be dominated by the | y VU ' U y

resonance response at frequency 5 .
An example steady state response of an

input triangular force
17



Appendix

Fourier Series of some Common Periodic Functions




Function:

a for0<x<m
—a for—-nm<x<O0

F) = {

Fourier series:

fx) =

4a (sin X

T 1

_|_

fx)
T QP :—-—-—-——-—-—:
g—ﬂ 0 ?r ilﬂf E.m
sin 3x N sin 5x N
3 5



Function:

a ford<x<m—d : | jf{ 7 _2_ © o 3m
—a form+d<x<2m—d |0 2n

f(x)={

Fourier series:

4a 1 1
f) = ?<Cosdsinx +§cos 3d sin 3x +§cos 5d sin 5x + )



Function: f&)
ab ! i
Foo) = a ford <x<2m—d : ; ; |
=10 forO0<x<d,2mn—d<x<2m e e T L I
1430,

Fourier series:

2a (m—d sin(m—d sin2(mr —d sin3(mr —d
fx) = — ( )COSX-l- ( )COSZX— ( )+---
T 2 1 2 3



Function:

([ 2ax n< <T[

— or ——<x<—

for=4, T 2 2
2a(m — x) T <3TL’

B for g =x ==

Fourier series:

f(x) =

—~ +

8a (sinx sin3x sinbx
1 32 52

71-2



Function:
( ax
— for0<x<m
f(X) = < a(zn_n_ X) X
f‘O,r. T < X < 27.[ -~ 0 (4 27( 37(
T
\

Fourier series:

2 1l

+ +

a 4a/cosx cos3x cosbx
f) == 1 32 52 T



Function:

f) = {%

/A

Fourier series:

Sin x

2a
=2
T

1

sin 2x

sin 3x

2

_|_

3




Function:

(ax for0<x<
foy={7 JO7V=*=" 0
kO form < x <2m R

Fourier series:

f()-—‘l 2a Cosx+c053x+c055x_+ +a sin x sh12x_FsH13x
S A 32 52 1 5 3



Function:

fx) = - 0<x<?2
(x) = o for X [

Fourier series:

f(x)=§—E + +

a a/{sinx Ssin2x sin3x+
1 2 3



Function:

fe
( ax
7 —b<x<bh
_ a b<x<m-—b>b -
a(m — x) B —*d*:|d*_
7 form—b<x<m+b
. —a form+b<x<2m—b

Fourier series:

f@) =?

Find yourself
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fx)
Function:

ak--
Flo) = {asinx for0<x<m /\

0 form<x<2nm > 0

Fourier series:

& = 3= " Tx3  3x35  Sx7

Za(l wsinx cos2x cosd4dx cos6x
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Function:

e

a
oo = @ COS X for0<x<m \\\\ ﬁ\\\\\
() =1_1 cos x for—m<x<0 \-O \

Fourier series:

8a [sin2x 2sin4dx 3sin6x

T 1><3+ 3X5 T 5X7



Function:

f ={x? for —m<x<nm

Fourier series:

2 COS X
f(x) =?—4( 1

cos2x coSs3x
22 T 32




Function:

feo ={alsinx| for —m<x<m

Fourier series:

f(x>=2—a—4a(

A I

CcOoS 2x+cos 4x+cos 6x+
1x3 3X5 5% 7

)



Thank you




