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Harmonic Force

𝑝𝑜 sin 2𝜋  𝑓𝑡
𝑢(𝑡)(𝑡)

A simple structure subjected to a harmonic loading, 𝑝 = 𝑝𝑜 sin  𝜔𝑡 = 𝑝𝑜 sin 2𝜋  𝑓𝑡𝑡
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Response to Harmonic Force

In mathematics, the response is the solution of the

following linear non-homogeneous differential equation:

𝑚  𝑢 + 𝑐  𝑢 + 𝑘 𝑢 = 𝑝𝑜 sin( 𝜔𝑡)

The solution must also satisfy the prescribed initial

conditions: 𝑢(0) and  𝑢(0).

……………. (1)

(𝑡) (𝑡) (𝑡)

(0) (0)
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A Quick Review of Basic Mathematical Concepts

Solution form:

A general solution 𝑢 of linear nonhomogeneous differential equation is the sum of a general 

solution 𝑢ℎ(𝑡) of the corresponding homogenous differential equation and a particular solution 

𝑢𝑝(𝑡).

𝑢 = 𝑢ℎ + 𝑢𝑝

where

𝑚  𝑢ℎ + 𝑐  𝑢ℎ + 𝑘 𝑢ℎ = 0

and

𝑚  𝑢𝑝 + 𝑐  𝑢𝑝 + 𝑘 𝑢𝑝 = 𝑝𝑜 sin( 𝜔𝑡)

……. (2)

……. (3)

…… (4)

(𝑡)

(𝑡)

(𝑡)

(𝑡) (𝑡) (𝑡)

(𝑡) (𝑡) (𝑡)

(𝑡) (𝑡) (𝑡)
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𝑢𝑝(𝑡) is the specific response generated by the form of external force function (in this case

external force function is harmonic and 𝑢𝑝(𝑡) is also harmonic) and 𝑢𝑝(𝑡) does not need to

satisfy the initial conditions.

Introducing the general solution into the governing equation of motion, we obtain

𝑚  𝑢ℎ + 𝑢𝑝 + 𝑐
 

𝑢ℎ + 𝑢𝑝 𝑡 + 𝑘 𝑢ℎ + 𝑢𝑝

= 𝑚  𝑢ℎ + 𝑐  𝑢ℎ + 𝑘 𝑢ℎ + 𝑚  𝑢𝑝 + 𝑐  𝑢𝑝 + 𝑘 𝑢𝑝 𝑡

= 0 + 𝑝𝑜 sin( 𝜔𝑡)

(𝑡)

(𝑡) (𝑡)

(𝑡) (𝑡) (𝑡) (𝑡) (𝑡)(𝑡)

(𝑡) (𝑡) (𝑡) (𝑡) (𝑡) (𝑡)

A Quick Review of Basic Mathematical Concepts



Response of Undamped SDF Systems
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Response to Harmonic Loading

(Undamped Systems, 𝑐 = 0)

𝑚  𝑢 + 𝑘 𝑢 = 𝑝𝑜 sin( 𝜔𝑡)

Homogeneous (or Complementary) Solution (Undamped Systems)

From the previous section, we have already obtained 𝑢ℎ as

𝑢ℎ = 𝐴 cos 𝜔𝑡 + 𝐵 sin(𝜔𝑡)

(𝑡) (𝑡)

(𝑡)

(𝑡)
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Response to Harmonic Loading

(Undamped Systems, 𝑐 = 0)

Particular Solution (Undamped Systems)

The particular solution of a linear second-order differential equation governing the response

of an undamped SDF system subjected to harmonic force, is of the form

𝑢𝑝 = 𝐺 sin( 𝜔𝑡)

 𝑢𝑝 = −𝐺 𝜔2 sin( 𝜔𝑡)

(𝑡)

(𝑡)
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Substituting these two values of 𝑢𝑝 and  𝑢𝑝 into the governing equation of motion, we get

𝑚  𝑢𝑝 + 𝑘 𝑢𝑝 = 𝑝𝑜 sin( 𝜔𝑡)

−𝑚 𝐺 𝜔2 sin  𝜔𝑡 + 𝑘 𝐺 sin  𝜔𝑡 = 𝑝𝑜 sin( 𝜔𝑡)

Response to Harmonic Loading

……………. (5)

……………. (6)

(Undamped Systems, 𝑐 = 0)

𝑡 𝑡

𝑡 𝑡
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Solving for 𝐺, we get

𝐺 =
𝑝0
𝑘

1

1 −  𝜔/𝜔 2

Therefore,

𝑢𝑝 =
𝑝0
𝑘

1

1 −  𝜔/𝜔 2
sin( 𝜔𝑡)

Response to Harmonic Loading

……………. (7)

……………. (8)

(Undamped Systems, 𝑐 = 0)

𝑡
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The general solution becomes,

𝑢 = 𝑢ℎ + 𝑢𝑝

𝑢 = 𝐴 cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡 +
𝑝0
𝑘

1

1 −  𝜔/𝜔 2
sin( 𝜔𝑡)

Response to Harmonic Loading

….….………. (9)

……………. (10)

(Undamped Systems, 𝑐 = 0)

𝑡 𝑡 𝑡

𝑡
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Now we have to determine 𝐴 and 𝐵,

 𝑢 = −𝜔 𝐴 sin 𝜔𝑡 + 𝜔 𝐵 cos 𝜔𝑡 +
𝑝0
𝑘

 𝜔

1 −  𝜔/𝜔 2
cos( 𝜔𝑡)

This yields,

𝑢 = 𝐴

 𝑢 = 𝜔 𝐵 +
𝑝0
𝑘

 𝜔

1 −  𝜔/𝜔 2

Response to Harmonic Loading

………. (11)

………. (12)

(Undamped Systems, 𝑐 = 0)

𝑡

0

0
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Therefore,

𝐴 = 𝑢

𝐵 =
 𝑢

𝜔
−
𝑝0
𝑘

 𝜔/𝜔

1 −  𝜔/𝜔 2

Response to Harmonic Loading

……………. (13)

(Undamped Systems, 𝑐 = 0)

0

0
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Let’s introduce 𝛽 =  𝜔/𝜔 (frequency ratio).

The general solution becomes,

𝑢 = 𝑢 cos 𝜔𝑡 +
 𝑢

𝜔
−
𝑝0
𝑘

𝛽

1 − 𝛽2
sin(𝜔𝑡) +

𝑝0
𝑘

1

1 − 𝛽2
sin( 𝜔𝑡)

Response to Harmonic Loading

Transient Vibrations Steady-state Response

……. (14)

(Undamped Systems, 𝑐 = 0)

0𝑡
0
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Response to Harmonic Loading

 𝜔

𝜔
= 0.2

𝑢 0 =
0.5 𝑝𝑜
𝑘

 𝑢 0 =
𝜔 𝑝𝑜
𝑘

Harmonic force

Response of undamped 
system to harmonic force

(Chopra (2012) Dynamics of Structures, 4th Edition)

(Undamped Systems, 𝑐 = 0)

0

0

𝑢 𝑡

𝑝𝑜/𝑘

𝑡
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• In equation (14), 𝑢 contains two distinct vibration components:

(1) the sin( 𝜔𝑡) term, giving an oscillation at the forcing or exciting frequency; and

(2) the sin(𝜔𝑡) and cos(𝜔𝑡) terms, giving an oscillation at the natural frequency

of the system.

• The first of these is the forced vibration or steady-state vibration, for it is present

because of the applied force no matter what the initial conditions.

• The latter is the free vibration or transient vibration, which depends on the initial

displacement and velocity. It exists even if 𝑢 =  𝑢 = 0.

Response to Harmonic Loading

(Undamped Systems, 𝑐 = 0)

(𝑡)

(0) (0)
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𝑢 =
𝑝0
𝑘

1

1 − 𝛽2
sin  𝜔𝑡 − 𝛽 sin 𝜔𝑡

• For the case 𝑢 =  𝑢 = 0, the Equation (14) specializes to

Response to Harmonic Loading

……………. (15)

(Undamped Systems, 𝑐 = 0)

(𝑡)

(0) (0)



Response of Damped SDF Systems
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……………. (17)

(𝑡)

(𝑡)

(𝑡) (𝑡) (𝑡)𝑚  𝑢 + 𝑐  𝑢 + 𝑘 𝑢 = 𝑝𝑜 sin( 𝜔𝑡) ……………. (16)

Response to Harmonic Loading

Homogeneous (or Complementary) Solution:

From the previous section, we have already obtained 𝑢ℎ as

𝑢ℎ = 𝑒−𝜉 𝜔 𝑡 𝐴 cos(𝜔𝐷𝑡) + 𝐵 sin(𝜔𝐷𝑡)

Where 𝐴 and 𝐵 are arbitrary constants.

An alternate form is,

𝑢ℎ = 𝑒−𝜉 𝜔 𝑡 𝜌ℎ cos(𝜔𝐷𝑡 − 𝜃ℎ)

Where 𝜌ℎ and 𝜃ℎ are arbitrary constants

(𝑡) ……………. (19)
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Particular solution 𝑢𝑝(𝑡) is the specific response generated by the form of external force

function. Its form depends upon the form of dynamic loading. The specific response to a

harmonic force is a harmonic function with a phase lag.

Response to Harmonic Loading

(𝑡)

The particular solution for harmonic force is also harmonic with a phase lag

 𝑢𝑝 𝑡 = 𝜌𝑝 sin( 𝜔𝑡 − 𝜃𝑝

Harmonic Force, 𝑝 = 𝑝𝑜 sin( 𝜔𝑡)

𝜃𝑝/ 𝜔
Displacement 

Amplitude 𝜌𝑝

Time, 𝑡

Maximum Force, 𝑝𝑜

𝑡

𝑡
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𝑢𝑝 = 𝜌𝑝 sin( 𝜔𝑡 − 𝜃𝑝)

in which 𝜌𝑝 is amplitude and 𝜃𝑝 is phase lag.

The particular solution can also be transformed into

𝑢𝑝 = 𝐺′
1 sin  𝜔𝑡 + 𝐺′

2 cos( 𝜔𝑡)

Where 𝐺′1 and 𝐺′2 are constants to be evaluated.

Employing the previous notations, and , we get

𝑚  𝑢𝑝 + 2 𝜉 𝑚 𝜔  𝑢𝑝 +𝑚 𝜔2𝑢𝑝 = 𝑝𝑜 sin( 𝜔𝑡)

Response to Harmonic Loading

……………. (21)

……………. (22)

𝜉 =
𝑐

𝑐𝑐
=

𝑐

2 𝑚 𝜔
𝜔2 =

𝑘

𝑚

𝑡

𝑡 𝑡 𝑡

𝑡
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Substituting the general solution of 𝑢𝑝 in equation (21) to the governing equation (22), where

𝑢𝑝 = 𝐺′
1 sin  𝜔𝑡 + 𝐺′

2 cos( 𝜔𝑡)

 𝑢𝑝 =  𝜔𝐺′
1 cos  𝜔𝑡 −  𝜔 𝐺′2 sin  𝜔𝑡

 𝑢𝑝 = − 𝜔2 𝐺′
1 sin  𝜔𝑡 −  𝜔2 𝐺′

2 cos( 𝜔𝑡)

and separating the multiples of sin( 𝜔𝑡) from the multiples of cos( 𝜔𝑡) leads to

(−𝐺′1  𝜔
2 − 𝐺′

2  𝜔 (2 𝜉 𝜔) + 𝜔2 𝐺′
1) sin( 𝜔𝑡)

+(−𝐺′
2
 𝜔2 + 𝐺′

1  𝜔 (2 𝜉 𝜔) + 𝜔2 𝐺′
2) cos( 𝜔𝑡) =

𝑝𝑜
𝑚

sin( 𝜔𝑡)

Response to Harmonic Loading

𝑡

𝑡

𝑡

𝑡
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Hence, −𝐺′
1  𝜔

2 − 𝐺′
2  𝜔 2 𝜉 𝜔 + 𝜔2 𝐺′

1 =
𝑝𝑜

𝑚

−𝐺′
2  𝜔

2 − 𝐺′
1  𝜔 2 𝜉 𝜔 + 𝜔2 𝐺′

2 = 0

Response to Harmonic Loading

……………. (23)

Dividing the above two equations by 𝜔2 and introducing 𝛽 =  𝜔/𝜔 (frequency ratio),

𝐺′1 1 − 𝛽2 − 𝐺′
2 2 𝜉 𝛽 =

𝑝𝑜
𝑘

𝐺′2 1 − 𝛽2 + 𝐺′1 2 𝜉 𝛽 = 0

……………. (24)
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Response to Harmonic Loading

These are two simultaneous algebraic equations for two unknown (𝐺′1, 𝐺′2 ). There

simultaneous solution yields,

𝐺′1 =
𝑝𝑜
𝑘

1 − 𝛽2

1 − 𝛽2 2 + 2 𝜉 𝛽 2

𝐺′2 =
𝑝𝑜
𝑘

−2 𝜉 𝛽

1 − 𝛽2 2 + 2 𝜉 𝛽 2

……………. (25)

……………. (26)

Therefore, the particular solution 𝑢𝑝 is obtained as

𝑢𝑝 = 𝐺′
1 sin  𝜔𝑡 + 𝐺′

2 cos( 𝜔𝑡)

𝑢𝑝 =
𝑝𝑜
𝑘

1

1 − 𝛽2 2 + 2 𝜉 𝛽 2
1 − 𝛽2 sin  𝜔𝑡 − 2 𝜉 𝛽 cos  𝜔𝑡

𝑡

𝑡

𝑡
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This particular solution can also be written as

𝑢𝑝 = 𝜌𝑝 sin( 𝜔𝑡 − 𝜃𝑝)

𝜌𝑝 =
𝑝𝑜
𝑘

1

1 − 𝛽2 2 + 2 𝜉 𝛽 2

𝜃𝑝 = tan−1
2𝜉𝛽

1 − 𝛽2

Response to Harmonic Loading

……………. (27)

……………. (28)

Where,

𝑡
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Response to Harmonic Loading

• Free decayed oscillation at 𝜔𝐷.

• 𝜌ℎ and 𝜃ℎ are defined such that 𝑢 0 and

 𝑢 0 are satisfied.

• The oscillations of 𝑢ℎ 𝑡 are quickly

damped and eventually become zero if the

harmonic force is applied for sufficient time.

𝑢 = 𝑒−𝜉 𝜔 𝑡 𝜌ℎ cos 𝜔𝐷𝑡 − 𝜃ℎ + 𝜌𝑝 sin( 𝜔𝑡 − 𝜃𝑝)

• Constant-amplitude oscillation at frequency  𝜔

with phase 𝜃𝑝 different from excitation.

• This term represents the “steady-state

response”.

……………. (30)𝑡

0

0

𝑡

𝑢 = 𝑢ℎ + 𝑢𝑝𝑡 𝑡 𝑡The general solution 𝑢 is:𝑡
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Response to Harmonic Loading

General solution

𝑢 𝑡 = 𝑢ℎ 𝑡 + 𝑢𝑝(𝑡)𝑡 𝑡 𝑡

Total 

Motion

𝑡

Free Motion

𝑢ℎ(𝑡)𝑡 Homogeneous 
solution

𝑡

Particular 
solution

𝑢𝑝(𝑡)𝑡

𝑡
Forced 

Motion

Note that it this case 𝑢(0) = 0 and  𝑢 (0 = 0.0
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Response to Harmonic Loading

Steady-state Response

After sufficient time has passed,

Therefore, 𝑢𝑝 is the “steady-state response”

𝑢𝑝 = 𝜌𝑝 sin( 𝜔𝑡 − 𝜃𝑝)

𝜌𝑝 =
𝑝𝑜

𝑘
𝐷

𝜃𝑝 = tan−1
2 𝜉 𝛽

1−𝛽2

𝐷 =
1

1 − 𝛽2 2 + 2 𝜉 𝛽 2

……………. (31)𝑡

𝑡

𝑢 → 𝑢𝑝𝑡 𝑡

Where



29

• The term 𝑝𝑜/𝑘 is the maximum static displacement (𝑢𝑜
𝑠𝑡). It is the displacement of 

structure that would occur if the maximum force 𝑝𝑜 were applied as a static force. 

• 𝐷 is a dimensionless factor known as the “dynamic magnification factor” or “dynamic 

response factor”. 

Response to Harmonic Loading

Steady-state Response



30

Maximum static 

displacement

Maximum dynamic 

displacement (𝜌) 

Dynamic 

magnification factor
x= 

𝐷 =
1

1 − 𝛽2 2 + 2 𝜉 𝛽 2
Dynamic magnification factor,

Response to Harmonic Loading

Steady-state Response

𝐷 is a function of (1) Frequency ratio 𝛽 =  𝜔/𝜔 and   (2) Critical damping ratio 𝜉

A plot of the amplitude of a response quantity against the excitation frequency is called a 

frequency-response curve. 
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• Figure shows the plot of 𝐷 against 𝛽 for structures 

with 𝜉 = 0, 0.1, 0.2, 0.5 and 1. 

• Damping reduces 𝐷, and hence the deformation 

amplitude at all excitation frequencies.

Response to Harmonic Loading

Steady-state Response

Frequency ratio 𝛽 =  𝜔/𝜔

D
y
n
a
m
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 m

a
g
n
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ic

a
ti
o
n
 f
a
c
to

r
𝐷
=
𝑢
𝑚
𝑎
𝑥
/𝑢

𝑜𝑠
𝑡
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Several observations can be made:

(1) When 𝛽 approaches to zero, 𝐷1, and the

dynamic displacement amplitude is about the

same as the static one.

In the other words, if the forcing frequency  𝜔 is

much lower than the natural frequency of the

structure ω, the dynamic effects are negligible.

The displacement is controlled by the stiffness of

structure, with little effect of mass and damping,

so we call this range (𝛽  0) as “pseudo static”

range.

𝜌 ≅ 𝑢𝑜
𝑠𝑡 =

𝑝𝑜
𝑘

Frequency ratio 𝛽 =  𝜔/𝜔

D
y
n
a
m

ic
 m

a
g
n
if
ic

a
ti
o
n
 f
a
c
to

r
𝐷
=
𝑢
𝑚
𝑎
𝑥
/𝑢

𝑜𝑠
𝑡

Response to Harmonic Loading
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(2) On the other extreme, when 𝛽 >> 1, 𝐷  0.

If the forcing frequency  𝜔 is much higher than the

natural frequency of the structure 𝜔, the displacement

approaches to zero.

In this extreme, the inertia force dominates. So we call

this range “inertial range”.

This result implies that the response is controlled by

the mass of the system.

𝑢𝑜 ≅ 𝑢𝑜
𝑠𝑡/ 𝛽2

Response to Harmonic Loading

Frequency ratio 𝛽 =  𝜔/𝜔

D
y
n
a
m
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 m
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g
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r
𝐷
=
𝑢
𝑚
𝑎
𝑥
/𝑢

𝑜𝑠
𝑡
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(3) Between the two extremes, there is a range where

the displacement can be very large when damping

ratio is low.

This is the range where 𝛽 is close to 1.

At 𝛽 = 1, 𝐷  peak, i.e. a small force can produce a

very large response.

𝐷 =
1

2 𝜉

This result implies that the response is controlled by

the damping of the system. Dynamic magnification

factor is inversely proportional to damping.

In this range, the damping force plays a very crucial

role. So, we call this range “resonant range”.

Response to Harmonic Loading

Frequency ratio 𝛽 =  𝜔/𝜔
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𝐷
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𝑢
𝑚
𝑎
𝑥
/𝑢

𝑜𝑠
𝑡
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Resonant Amplification

To give you some ideas about this “resonant amplification”,

• 𝜉 of steel structures ≈ 0.01, 𝐷 = 1/(2 × 0.01) = 50

• 𝜉 of concrete structures ≈ 0.05, 𝐷 = 1/(2 × 0.05) = 10

• 𝜉 of tall towers (300 m to 400 m high), long span bridges (300 m up span)≈ 0.005, 𝐷 = 100
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Phase Angle (𝜃𝑝)

• The phase angle 𝜃𝑝, which defines 

the time by which the response 

lags behind the force, varies with 

𝛽 =  𝜔/𝜔 as shown in Figure.

• It is examined next for the same 

three regions of the excitation-

frequency scale:

(Chopra (2012) Dynamics of Structures, 4th Edition)

P
h
a
s
e
 a

n
g
le

𝜃
𝑝

𝛽 =  𝜔/𝜔
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Phase Angle (𝜃𝑝)

1) If 𝛽 =  ω/ω ≪ 1 (i.e., the force is “slowly varying”),𝜃𝑝 is close to 0∘ and the

displacement is essentially in phase with the applied force. When the force acts to the

right, the system would also be displaced to the right.

2) If 𝛽 =  𝜔/𝜔 ≫ 1 (i.e., the force is “rapidly varying”),𝜃𝑝 is close to 180∘ and the

displacement is essentially of opposite phase relative to the applied force. When the

force acts to the right, the system would be displaced to the left.

3) If 𝛽 =  𝜔/𝜔 = 1 (i.e., the forcing frequency is equal to the natural frequency), 𝜃𝑝 = 90∘

for all values of 𝜉, and the displacement attains its peaks when the force passes through

zeros.

(Chopra (2012) Dynamics of Structures, 4th Edition)
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Additional explanation on pseudo-static, inertial and resonant ranges

Let us consider the equation of motion.

𝑓𝐼 + 𝑓𝐷 + 𝑓𝑠 = 𝑝𝑜 sin(𝜔𝑡)

The left-hand side of the equation contains three structural dynamic forces. The right-hand

side is an external force.

The proportions of these three forces (at steady-state condition) are derived as follows.

𝑢 = 𝜌 sin( 𝜔𝑡 − 𝜃)

 𝑢 =  𝜔 𝜌 cos( 𝜔𝑡 − 𝜃)

 𝑢 = − 𝜔2 𝜌 sin( 𝜔𝑡 −𝜃)

𝑢 and  𝑢 are in opposite phase.

At steady-state condition

𝑡 𝑡 𝑡

𝑡

𝑡

𝑡

𝑡 𝑡
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𝑓𝑠 = 𝑘 𝑢 = 𝑘 𝜌 𝑓𝑠 𝑛 = 𝑑

𝑘 𝜌
= 1

𝑓𝑠
max𝑓𝑠

max

𝑓𝑠 = 𝑐  𝑢 = 2 𝜉 𝛽 𝑘 𝜌 𝑓𝐷 𝑛 = 𝑑

𝑘 𝜌
= 2 𝜉 𝛽𝑓𝐷

max

𝑓𝐷
max

𝑓𝑠 = 𝑚  𝑢 = 𝛽2 𝑘 𝜌 𝑓𝐼 𝑛 = 𝑑

𝑘 𝜌
= 𝛽2𝑓𝐼

max

𝑓𝐼
max

(𝑡)

(𝑡)

(𝑡)

Additional explanation on pseudo-static, inertial and resonant ranges
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𝑓𝑠 dominates 𝑓𝐼 dominates

Both 𝑓𝑠 and 𝑓𝐼 are the major forces

But they are in opposite phase, hence cancelling each other

The remaining 𝑓𝐷 , which is relatively weak, becomes more important.

…

𝑓𝐼 𝑛

𝑓𝑠 𝑛

for 𝜉 ≪ 1𝑓𝐷 𝑛

𝛽

Normalized Force Amplitude

1

1

Additional explanation on pseudo-static, inertial and resonant ranges
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• Close to 𝛽 = 1, both 𝑓𝑆 and 𝑓𝐼 are the major forces, but they are in opposite phase,

hence cancelling each other. The remaining 𝑓𝐷 which is relatively weak force becomes

more important in this middle range.

• At 𝛽 = 1, the equation of motion becomes 𝑓𝐷 = 𝑝𝑜 sin(𝜔𝑡). In order to satisfy this

equilibrium, large 𝜌 is developed  resonance.

𝑓𝐷
max

= 2 𝜉 𝛽 𝑘 𝜌 =  𝑝𝑜

• The term 2 𝜉 is small, and hence 𝜌 needs to be large.

Additional explanation on pseudo-static, inertial and resonant ranges
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Resonant Response

To gain more understanding in the nature of resonant response, let us consider the general

solution 𝑢 at 𝛽 = 1:

Note that sin(𝜔𝑡 −
𝜋

2
) = −cos(𝜔𝑡)

𝑢 = 𝑒−𝜉 𝜔 𝑡 𝜌ℎ cos 𝜔𝑡 − 𝜃ℎ +
𝑝𝑜
𝑘

1

2 𝜉
sin 𝜔𝑡 −

𝜋

2
𝑡

𝑡

𝑢 =
1

2 𝜉

𝑝𝑜
𝑘

𝑒−𝜉 𝜔 𝑡 cos(𝜔𝐷𝑡) +
𝜉

1 − 𝜉2
sin(𝜔𝐷𝑡) − cos(𝜔𝑡)𝑡

Assume that the structure initially has no motion i.e. 𝑢 = 0 and  𝑢 = 0.  With these 

specified initial conditions, 𝜌ℎ and 𝜃ℎ can be determined and, we finally obtain 

0 0
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Resonant Response

For lightly damped systems,

𝑢 ≅
1

2 𝜉

𝑝𝑜
𝑘

𝑒−𝜉 𝜔 𝑡 − 1 cos(𝜔𝑡)𝑡

1

2 𝜉

𝑢 𝑡

𝑝𝑜/𝑘

𝑡

𝑡

The response to resonant loading 𝛽 = 1 for at-rest initial 

conditions. The response builds up gradually until the 
amplitude approaches the steady-state value.

The value 𝑒−𝜉 𝜔 𝑡 − 1 starts from 0 and approach -1 

for large values of 𝑡.

The term
1

2 𝜉

𝑝𝑜

𝑘
𝑒−𝜉 𝜔 𝑡 − 1 is the envelope function.
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Resonant Response

• For highly damped systems, 

it takes only a few cycles to 

reach the peak.

• For lowly damped systems, 

it may take large number of 

cycles to reach the peak. 

The rate of buildup of resonant response from rest

1

2 𝜉

1

4 𝜉

 ω𝑡

𝜉 = 0.2

𝜉 = 0.05

𝜉 = 0.02

𝜉 = 0.1
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Resonant Response

Therefore, in order that large resonant response to be fully developed, three conditions have to 

be met: 

a. Frequency tuning, 𝛽 ≅ 1

b. Low damping ratio, 𝜉 ≪ 1

c. Sufficiently long duration of excitation

Examples of harmonic loading which can cause resonant response

Wind Loading Vortex flow generates harmonic force

Machine Loading Unbalance motor
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Evaluation of Damping from Resonant Curve

• “Resonance” makes ‘dynamic response’ much different from ‘static response’.

• “Resonance magnification” is governed by “damping”

• But it is usually not feasible to determine the damping “𝑐” for a given structure. This is a 

major source of error in dynamic analysis. 

• So the value of “𝑐” is usually assumed based on past experiences.

• Damping “𝑐” can be evaluated directly from experiment.

• One way to experimentally determine the damping “𝑐” is “free vibration decay”.

• Another way to estimate the damping “𝑐” is to use the “frequency-response curve”. 

Frequency-response curve is a plot of the amplitude of a response quantity against the 

excitation frequency.
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The Evaluation of damping from 
force vibration tests

𝜉 =
1

2

𝑢𝑜
𝑠𝑡

𝑢𝑜  𝜔=𝜔

𝜉 =
1

2 𝐷

D
y
n
a
m

ic
 m

a
g
n
if
ic

a
ti
o
n
 f
a
c
to

r
𝐷
=
𝑢
𝑚
𝑎
𝑥
/𝑢

𝑜𝑠
𝑡

Frequency ratio 𝛽 =  𝜔/𝜔

2 𝜉
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Response to Harmonic Ground Motions

Harmonic ground motion is represented by

𝑢𝑔 = 𝑢𝑔𝑜 sin(2𝜋  𝑓𝑡)𝑡

𝑢𝑔 𝑡

𝑢 𝑡

𝑢𝑔𝑜

Amplitude

Time, 𝑡

 𝑓 = Frequency of ground motion 𝑇 = 1/  𝑓

Period
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Response to Harmonic Ground Motions

Effective Force: 

𝑃𝑒𝑓𝑓 = −𝑚
𝑑2𝑢

𝑑𝑡2
= 𝑚 2 𝜋  𝑓

2
𝑢𝑔𝑜 sin(2𝜋  𝑓𝑡)

Equation of motion: 

𝑚
𝑑2𝑢

𝑑𝑡2
+ 𝑐

𝑑𝑢

𝑑𝑡
+ 𝑘 𝑢 = 𝑃𝑒𝑓𝑓 = 𝑚 2 𝜋  𝑓

2
𝑢𝑔𝑜 sin(2𝜋  𝑓𝑡)

𝑡

𝑡 𝑡
𝑡 𝑡

𝑡
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Response to Harmonic Ground Motions

𝑢 𝑡𝑡

Steady state

Harmonic Response

Time
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At Steady stage:

𝑢 = 𝑅 𝑢𝑔𝑜 sin(2𝜋  𝑓𝑡 − 𝜙)

𝜙 = phase lag

𝑅 = Dynamic amplification factor (function of frequency ratio and damping ratio)

Response to Harmonic Ground Motions

𝑡
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𝑅 =

 𝑓
𝑓

2

1 −
 𝑓

𝑓

2 2

+ 2 𝜉
 𝑓

𝑓

2

For 𝑅 = 1, the structure will have same amplitude of shaking as the ground shaking.

Response to Harmonic Ground Motions

The same ground shaking is not equally harmful to all structures because they will 

have different natural frequencies and therefore, respond differently.
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Response to Harmonic Ground 
Motions

• In (a), the structure is in-phase with

ground shaking, but have low amplitude.

• In (b), the response of structure lags by a

quarter-cycle to the ground shaking.

• In (c), the mass of structure remains at

the same place due to high inertial force,

while the ground shakes. The structural

response and ground shaking are

completely out of phase.

(a) (b) (c)

𝑅 𝜉

Large dynamic response due to the effect of “Resonance”



Thank you


