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Equation of Motion of One-story Building

The deformation 𝒖(𝑡) of the structure due to ground acceleration  𝒖𝒈(𝑡) is identical to the deformation

𝒖(𝑡) of the structure if its base were stationary and if it were subjected to an external force 𝑷𝒆𝒇𝒇 𝑡 =

− 𝑚  𝒖𝒈(𝑡).

(𝑡)

(𝑡)

(𝑡)

(𝑡)

(𝑡)

𝑚
𝑑2𝒖(𝑡)

𝑑𝑡2
+ 𝑐

𝑑𝒖(𝑡)

𝑑𝑡
+ 𝑘 𝒖(𝑡) = 𝑝(𝑡)

(𝑡) (𝑡)
(𝑡) (𝑡)𝑷𝒆𝒇𝒇 𝑡

𝑚

 𝒖𝒈(𝑡)(𝑡)

𝑚
𝑑2𝒖 𝑡

𝑑𝑡2
+ 𝑐

𝑑𝒖 𝑡

𝑑𝑡
+ 𝑘 𝒖 𝑡 = −𝑚

𝑑2𝒖𝒈 𝑡

𝑑𝑡2
(𝑡) (𝑡) (𝑡)

(𝑡)

𝑚
𝑷𝒆𝒇𝒇 𝑡

Fixed Base



3

Free Vibration Response of SDF Systems

Free vibration response: the motion of an SDF system with the applied force set equal to zero.

Free vibration response in mathematical terms is the mathematical solution of the following 

homogeneous differential equation:

𝑚  𝑢 𝑡 + 𝑐  𝑢 𝑡 + 𝑘 𝑢 𝑡 = 0𝑡 𝑡 𝑡 Equation (1)
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A Quick Review of Basic Mathematical Concepts

Solution form:

Consider a first-order differential equation

𝑑𝑢(𝑡)

𝑑𝑡
+ 𝑘 𝑢 𝑡 = 0

𝑑𝑢(𝑡)

𝑑𝑡
= −𝑘 𝑢(𝑡)

By separation of variables,

𝑑𝑢(𝑡)

𝑢(𝑡)
= −𝑘 𝑑𝑡

Integrate both sides,

𝑙𝑛(𝑢 𝑡 ) = −𝑘 𝑡 + 𝑐

Where 𝑐 is an arbitrary constant.

By applying exponential operation,

𝑒𝑙𝑛(𝑢 𝑡 ) = 𝑢(𝑡) = 𝑒(−𝑘 𝑡+𝑐) = 𝑒−𝑘 𝑡 𝑒𝑐 = 𝑐0 𝑒
−𝑘 𝑡

The solution:

𝑢 𝑡 = 𝑐0 𝑒
−𝑘 𝑡

where 𝑐0 is an arbitrary constant.

It can be shown that the solutions of higher order

differential equations are also in this exponential

form.

𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

𝑡
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Substituting 𝑐1𝜙1( info the left-hand side of equation

of motion (Eq (1)), we get

𝑚 (𝑐1  𝜙1 (𝑡) + 𝑐 (𝑐1  𝜙1 𝑡 ) + 𝑘 (𝑐1 𝜙1 𝑡 ) =

𝑐1 [𝑚  𝜙1(𝑡 + 𝑐  𝜙1 𝑡 + 𝑘 𝜙1 𝑡 ] = 𝑐1. 0 = 0

Hence 𝑐1 𝜙1(𝑡) is also a solution of the equation of

motion (Eq (1)).

In similar manner, by a direct substitution of  

𝑐1 𝜙1 𝑡 + 𝑐2 𝜙2(𝑡) into the left-hand side of  Eq (1), 

it can be shown that 𝑐1 𝜙1 𝑡 + 𝑐2 𝜙2(𝑡) is also a 

solution of the equation of motion.

Superposition:

If a solution of a homogeneous linear differential

equation is the multiplied by a constant, the resulting

function is also a solution.

The sum of two solutions is also a solution.

Proof:

Let 𝜙1(𝑡) and 𝜙2(𝑡) be independent solutions of

governing differential equation of an SDF system,

such that

𝑚  𝜙1 𝑡 + 𝑐  𝜙1 𝑡 + 𝑘 𝜙1 𝑡 = 0

𝑚  𝜙2(𝑡) + 𝑐  𝜙2 𝑡 + 𝑘 𝜙2 𝑡 = 0

𝑡 𝑡

𝑡 𝑡 𝑡

𝑡 𝑡 𝑡

𝑡 𝑡 𝑡

𝑡 𝑡𝑡

𝑡

𝑡

𝑡

𝑡 𝑡

𝑡

A Quick Review of Basic Mathematical Concepts
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Initial Conditions

Consider 𝑢 𝑡 = 𝑐1𝜙1 𝑡 + 𝑐2𝜙2(𝑡) as a general

solution of the governing equation of motion. Since

the constants 𝑐1 and 𝑐2 can have any value, the

general solution can represent ∞ different solutions.

Usually initial conditions are known and we are

seeking for one specific solution that satisfies these

initial conditions.

Example of initial conditions:

𝑢(0) and  𝑢(0) are the initial displacement and initial

velocity of the SDF system.

Two conditions are needed because there are two

unknown arbitrary constants to be specified.

𝑢 0 = 𝑐1𝜙1 0 + 𝑐2𝜙2(0)

 𝑢 0 = 𝑐1  𝜙1 0 + 𝑐2  𝜙2(0)

𝜙1 0 , 𝜙2 0 ,  𝜙1 0 ,  𝜙2 0 , 𝑢 0 and  𝑢 0 all are 

known. Therefore 𝑐1 and 𝑐2 can be determined.

[For more details, see Erwin Kreyszig’s Advanced

Engineering Mathematics, John Wiley & Sons.]

𝑐1 𝜙1 𝑡 + 𝑐2 𝜙2(𝑡)𝑡𝑡𝑡

𝑐1 𝜙1 𝑡 + 𝑐2 𝜙2(𝑡)00

0 0

0

0

0 0

𝑐1  𝜙1 𝑡 + 𝑐2  𝜙2(𝑡)00

0 0 0 0

A Quick Review of Basic Mathematical Concepts
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Free Vibration Response of SDF Systems (continued)

Now consider the equation governing the free vibration of an SDF system:

𝑚  𝑢 𝑡 + 𝑐  𝑢 𝑡 + 𝑘 𝑢 𝑡 = 0

Assuming that the solution of Eq (1) is in the exponential form:

𝑢 𝑡 = 𝐺 𝑒𝑠 𝑡

where 𝐺 and 𝑠 are constants.

Substituting this solution into the equation of motion (Eq (1)),

𝑚 (𝑠2 𝐺 𝑒𝑠 𝑡) + 𝑐 (𝑠 𝐺 𝑒𝑠 𝑡) + 𝑘 (𝐺 𝑒𝑠 𝑡) = 0

𝑚 𝑠2 + 𝑐 𝑠 + 𝑘 𝐺 𝑒𝑠 𝑡 = 0

To have a non-zero solution of 𝑢(𝑡), the term (𝑚 𝑠2 + 𝑐 𝑠 + 𝑘) must be zero,

𝑠2 +
𝑐

𝑚
𝑠 +

𝑘

𝑚
= 0

……………. (1)

……………. (2)

𝑡 𝑡 𝑡

𝑡

𝑡

𝑠2 +
𝑐

𝑚
𝑠 +

𝑘

𝑚
= 0

……………. (3)

……………. (4)
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Case 1: Undamped Free Vibration Response

In this case, 𝑐 = 0.

Introducing the notation

𝜔 =
𝑘

𝑚

The equation (4) becomes,

𝑠2 + 𝜔2 = 0

Which has two solutions,

𝑠 = ± 𝑖 𝜔

Where 𝑖 = −1

Hence the general solution of 𝑢(𝑡) is 

𝑢 𝑡 = 𝐺1 𝑒
𝑖 𝜔 𝑡 + 𝐺2 𝑒

− 𝑖 𝜔 𝑡

Where 𝐺1 and 𝐺2 are arbitrary constants. 

……………. (5)

……………. (6)

……………. (7)𝑡

𝑡
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Case 1: Undamped Free Vibration Response (continued)

𝑢 𝑡 = 𝐺1 𝑒
𝑖 𝜔 𝑡 + 𝐺2 𝑒

− 𝑖 𝜔 𝑡

Since there are two arbitrary constants, two initial conditions need to specified, i.e. 𝑢(0) and  𝑢(0).

𝑢 0 = 𝐺1 𝑒
0 + 𝐺2 𝑒

0 = 𝐺1 + 𝐺2

 𝑢 0 = 𝑖 𝜔 𝐺1 𝑒
0 − 𝑖 𝜔 𝐺2 𝑒

0 = 𝑖 𝜔 𝐺1 − 𝑖 𝜔 𝐺2

Therefore,

𝐺1 =
1

2
𝑢 0 +

 𝑢 0

𝑖 𝜔

𝐺2 =
1

2
𝑢 0 −

 𝑢 0

𝑖 𝜔

……………. (8)

0

0

0

0

0 0

0

0

𝑡 ……………. (7)
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A Quick Review of Basic Mathematical Concepts

Taylor Series of 𝒆𝒙 (expand around x = 0):

𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+⋯ for −∞ < 𝑥 < ∞

𝑒𝑖 𝜔 𝑡 = 1 + 𝑖 𝜔 𝑡 +
(𝑖 𝜔 𝑡)2

2!
+
(𝑖 𝜔 𝑡)3

3!
+⋯

𝑒𝑖 𝜔 𝑡 = 1 + 𝑖 𝜔 𝑡 + (−1)
(𝜔 𝑡)2

2!
+ (−1)

𝑖 (𝜔 𝑡)3

3!
+ ⋯

𝑒𝑖 𝜔 𝑡 = 1 −
(𝜔 𝑡)2

2!
+ ⋯ + 𝑖 𝜔 𝑡 −

(𝜔 𝑡)3

3!
+ ⋯

Taylor series of cos 𝜔𝑡 is

1 −
(𝜔 𝑡)2

2!
+ ⋯

Similarly, the Taylor series of sin 𝜔𝑡 is

𝜔 𝑡 −
(𝜔 𝑡)3

3!
+ ⋯

Therefore, 

𝑒 𝑖 𝜔 𝑡 = cos 𝜔𝑡 + 𝑖 sin(𝜔𝑡)

This is called Euler’s equation.
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Introducing the Euler's equations:

𝑒± 𝑖 𝜔 𝑡 = cos 𝜔𝑡 ± 𝑖 sin(𝜔𝑡)

And the expressions for 𝐺1 and 𝐺2 (Eq (8)) into the solution (Eq (7)) , we obtain

𝑢 𝑡 = 𝑢 0 cos 𝜔𝑡 +
 𝑢 0

𝜔
sin(𝜔𝑡)

It is easy to verify that this equation is the solution of governing equation of motion by direct

substitution.

Case 1: Undamped Free Vibration Response (continued)

……………. (10)

……………. (9)

0
0

𝑡
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Case 1: Undamped Free Vibration Response (continued)

Deformed position of structure corresponding to location 1, 2, 3, 4 and 5 on response-time plot

𝜌 = 𝑢 0
2
+

 𝑢 0

𝜔

2

Amplitude
 𝑢 0

𝑢
0

𝑢
𝑡

𝑡

𝑇 =
2𝜋

𝜔

D
is

p
la

c
e

m
e

n
t,
0

0
0

Time

0

𝑡

𝑢 𝑡 = 𝑢 0 cos 𝜔𝑡 +
 𝑢 0

𝜔
sin(𝜔𝑡)𝑡 0

0
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Case 1: Undamped Free Vibration Response (continued)

The structure vibrates in simple harmonic motion (or oscillation).

The amplitude of oscillation depends upon 𝑢(0) and  𝑢(0). The above equation may be transformed

into

𝑢 𝑡 = 𝜌 cos(𝜔𝑡 − 𝜃)

Where

𝜌 = 𝑢 0
2
+

 𝑢 0

𝜔

2

𝜃 = tan−1
 𝑢 0

𝜔 𝑢(0)

……………. (11)

……………. (12)

0

0

0

0

𝑡

0 0
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Case 1: Undamped Free Vibration Response (continued)

• The oscillation does not decay because the structure is undamped. The period of oscillation 𝑇 is 

the time required for one cycle of free oscillation. For undamped structure, 

𝑇 =
2𝜋

𝜔
=
1

𝑓

Where 𝜔 is the natural circular frequency,

𝑓 is the natural (cyclic) frequency (cycle/sec, Hz), and

𝑇 is the natural period (sec)

• This term "natural" is used to qualify each of the above quantities to emphasize the fact that these

are “natural properties” of the structure.

• These properties are independent of the initial conditions.

……………. (13)
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Case 2: Damped Free Vibration Response

In this case 𝑐 ≠ 0; i.e. damping is present in the structure. 

The solutions of 

𝑠 = −
𝑐

2𝑚
±

𝑐

2𝑚

2

− 𝜔2

The characteristics of “𝑠" depends upon the sign of the term

Case 2 (a): The equation will have distinct real roots, if

Case 2 (b): The equation will have complex conjugate root, if

Case 2 (c): The equation will have real double roots, if

……………. (14)

𝑠2 +
𝑐

𝑚
𝑠 +

𝑘

𝑚
= 0 for this case are  

𝑐

2𝑚

2

− 𝜔2

𝑐

2𝑚

2

− 𝜔2 > 0

𝑐

2𝑚

2

− 𝜔2 < 0

𝑐

2𝑚

2

− 𝜔2 = 0
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Case 2 (b): Underdamped Systems (𝑐 < 2 𝑚 𝜔)

Let’s define 𝑐𝑐: critical damping: 𝑐𝑐 ≡ 2𝑚 𝜔

Let’s define 𝜉: critical damping ratio;

Hence, in underdamped systems, 0 < 𝜉 < 1

Rewriting the solution in terms of 𝜉, we get 𝑠 = −𝜉 𝜔 ± 𝜉 𝜔 2 − 𝜔2

𝑠 = −𝜉 𝜔 ± 𝜔2 1 − 𝜉2 −1

𝑠 = −𝜉 𝜔 ± 𝑖 𝜔𝐷

……………. (15)

……………. (17)𝜔𝐷 = 𝜔 1 − 𝜉2Where 

……………. (16)

𝜉 ≡
𝑐

𝑐𝑐
=

𝑐

2 𝑚 𝜔
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Case 2 (b): Underdamped Systems (𝑐 < 2 𝑚 𝜔) (continued)

Then the general solution of 𝑢(𝑡) is

𝑢 𝑡 = 𝐺1 𝑒
𝑠1 𝑡 + 𝐺2 𝑒

𝑠2 𝑡 = 𝐺1 𝑒
(− 𝜉 𝜔 𝑡 + 𝑖 𝜔𝐷 𝑡)+ 𝐺2 𝑒

(− 𝜉 𝜔 𝑡 − 𝑖 𝜔𝐷 𝑡)

𝑢 𝑡 = 𝑒(− 𝜉 𝜔 𝑡) 𝐺1 𝑒
(− 𝑖 𝜔𝐷 𝑡) + 𝐺2 𝑒

(− 𝑖 𝜔𝐷 𝑡)

When the initial conditions of 𝑢(0) and  𝑢 0 are introduced, the constants 𝐺1 and 𝐺2 can be

evaluated, and after using Euler’s equations we finally obtain,

𝑢 𝑡 = 𝑒(− 𝜉 𝜔 𝑡)
 𝑢 0 + 𝑢 0 𝜉 𝜔

𝜔𝐷
sin 𝜔𝐷 𝑡 + 𝑢 0 cos 𝜔𝐷 𝑡

……………. (19)

……………. (18)

𝑡

𝑡

𝑡

0 0

0 0
0

𝑡
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Case 2 (b): Underdamped Systems (𝑐 < 2 𝑚 𝜔) (continued)

The response in above equation can also be presented as

𝑢 𝑡 = 𝑒−𝜉 𝜔 𝑡 𝜌 cos(𝜔𝐷 𝑡 − 𝜃)

Where

𝜌 =
 𝑢 0 + 𝑢 0 𝜉 𝜔

𝜔𝐷

2

+ 𝑢 0
2

𝜃 = tan−1
 𝑢 0 + 𝑢 0 𝜉 𝜔

𝜔𝐷 𝑢 0

The equation (20) says that the underdamped system in its free vibration stage will oscillate

with circular frequency 𝜔𝐷 and with exponentially decreasing amplitude.

……………. (21 a, b)

……………. (20)

0

0

0 0

0 0

𝑡



19

Case 2 (b): Underdamped Systems (𝑐 < 2 𝑚 𝜔) (continued)

The effect of damping on free vibration

𝑇

𝑇𝐷

𝑡

 𝑢 0

𝑢
0

𝑢
𝑡

Exponential Decay
Undamped Structure

Damped 

Structure

Time

D
is

p
la

c
e

m
e

n
t

0

0
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Effect of Damping on Free Vibration

• In most structures, the critical damping

ratio 𝜉 is less than 0.2 and hence, 𝜔𝐷 = 𝜔

and 𝑇𝐷 = 𝑇.

• The rate of amplitude decay depends on 𝜉.

The effect of damping on 
natural frequency of vibration

D
a

m
p
in

g
 R

a
ti
o

Damped Natural Frequency

Undamped Natural Frequency
=

𝜔𝐷

𝜔

Range of damping 

for most structures

𝜉
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Effect of Damping on Free Vibration

The effect of damping on free vibration. Curves 1, 2, 3 and 4 are for 
damping ratio 0, 1, 2 and 5 percent
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=
𝑢
(𝑡
)

𝑢
(0
)

Time

Natural Vibration Period
=

𝑡

𝑇
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Damping in Structures

• In seismic design of most structures, 𝜉 = 0.05

is used.

• For tall buildings subjected to strong winds, we

generally assume 𝜉 = 0.005 − 0.02.

• For single cables, 𝜉 = 0.003 − 0.01.

Type of Construction 

Typical 

Damping 

Ratios (𝝃)

Steel frame with welded connections and 

flexible walls
0.02

Steel frame with welded connections, 

normal floors and exterior cladding
0.05

Steel frame with bolted connections, 

normal floors and exterior cladding
0.1

Concrete frame with flexible internal walls 0.05

Concrete frame with flexible internal walls 

and exterior cladding
0.07

Concrete frame with concrete or masonry 

shear walls
0.1

Concrete or masonry shear wall 0.1

Wood frame and shear wall 0.15
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Case 2 (c): Critical Damped Systems (𝑐 = 𝑐𝑐 = 2𝑚 𝜔)

In this case, 𝑐 = 𝑐𝑐 = 2𝑚 𝜔 and 𝜉 = 1. This will yield,

𝑠 = − 𝜔

The general solution of the governing equation of motion in this case will be of the form.

𝑢 𝑡 = 𝐺1 𝑒
𝑠 𝑡+ 𝑡 𝐺2 𝑒

𝑠 𝑡 = 𝐺1 + 𝑡 𝐺2) 𝑒
−𝜔 𝑡

The second term must contain 𝑡 since the two roots of quadratic equation in 𝑠 are identical.

 𝑢 𝑡 = −𝜔 𝐺1 + 𝑡 𝐺2) 𝑒
−𝜔 𝑡 + 𝐺2 𝑒

−𝜔 𝑡

𝑡

𝑡
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Case 2 (c): Critical Damped Systems (𝑐 = 𝑐𝑐 = 2𝑚 𝜔)

Using initial conditions 𝑢(0) and  𝑢(0), the constants 𝐺1 and 𝐺2 can be determined as follows.

𝐺1 = 𝑢 0

𝐺2 =  𝑢 0 + 𝜔 𝑢 0

The general solution will be,

𝑢 𝑡 = [𝑢 0 1 + 𝜔 𝑡 +  𝑢 0 𝑡] 𝑒−𝜔 𝑡

No oscillations. Critical damping just eliminated them.

0

0

0

0

00

0

𝑡
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Case 2 (c): Critical Damped Systems (𝑐 = 𝑐𝑐 = 2𝑚 𝜔)

Free-vibration response with critical damping 

(Clough and Penzien (2003) Dynamics of Structures, 3rd Edition).

No oscillations

𝑢 0

𝑢 𝑡

Displacement

 𝑢 0

𝑡

0

0
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Case 2 (a): Overdamped Systems (𝑐 > 𝑐𝑐)

• The response of an over-critically-damped system is similar to the motion of a critically-damped 

system.

• Not encountered in practice

• No oscillations
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Summary

Free vibration of under-damped, critically damped, and over-damped systems 

(Chopra (2012) Dynamics of Structures, 4th Edition)
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Decay of Free Vibration Response

Measured displacement response from a free-vibration test
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Free-vibration Tests

It can be shown that the ratio of any two successive peaks is

𝑢𝑖
𝑢𝑖+1

= 𝑒
(−2 𝜋 𝜉

𝜔
𝜔𝐷

)

Taking the natural logarithm on both sides gives the logarithmic decrement 𝛿, as follows.

𝛿 ≡ 𝑙𝑛
𝑢𝑖
𝑢𝑖+1

= 2 𝜋 𝜉
𝜔

𝜔𝐷

Hence for structure with low 𝜉,

𝛿 ≈ 2 𝜋 𝜉

The above equation is very useful and can be used for the identification of 𝜉 in existing structures. 



30

Free-vibration Tests

Sometimes it is more appropriate to consider the ratio
𝑢𝑖

𝑢𝑖+𝑚

where 𝑚 > 1,

𝑙𝑛
𝑢𝑖

𝑢𝑖+𝑚
= 2 𝑚 𝜋 𝜉

𝜔

𝜔𝐷

𝜉 ≈
1

2 𝑚 𝜋
𝑙𝑛

𝑢𝑖
𝑢𝑖+1

To determine the number of cycles elapsed for a 50% reduction

in displacement amplitude (𝑚50% ), we obtain the following

relation from the above equation.

𝑚50% =
0.11

𝜉

The number of cycles required to reduce the 

free vibration amplitude by 50% 

(Chopra (2012) Dynamics of Structures, 4th Edition)

Damping Ratio 𝜉

𝑚50%

𝑢𝑖
𝑢𝑖+𝑚



Thank you


