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Dynamics of Simple Structures
Introduction to Basic Structural Dynamic Behaviors

A simple structure = A structure that can be idealized as a concentrated mass “m” supported by

a massless structure with stiffness “k” in the lateral direction.
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A simple structure which can be
idealized as a single-degree-of-

freedom (SDF) system

A one-story building. Most of the mass is concentrated at the
roof level and the roof is essentially rigid compared to the
lateral-force resisting system

Courtesy: G. W. Housner



Some examples of simple structures
which can be idealized as single-

degree-of-freedom (SDF) systems




ldealized Structural System

By this idealization, if the roof of a simple structure is displaced laterally by a distance u, and then
released, the idealized structure will oscillate around its initial equilibrium configuration:
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The lateral displacement of roof as a function of time The oscillation will continue with the

D:‘;sp(acement uce) same amplitude u, and the idealized

structure will never come to rest.
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and will eventually come to rest. 5




« To incorporate this feature into the idealized structure,
an energy dissipating mechanism is required.

« Therefore, an energy absorbing element is introduced
In the idealized structure: the viscous damping
element (denoted by a dashpot).

« This simple structure is sometimes called a Single-
Degree-of-Freedom Structure.
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The functional elements of a single
degree of freedom system

Many basic concepts in structural dynamics
by studying this simple structure.

can be understood




Equation of Motion

The motion of the idealized one-story structure caused by dynamic excitation is governed by
an ordinary differential equation, called the “equation of motion”.

Formulation of the equation is possibly the most important phase of the entire analysis
procedure (and sometimes the most difficult phase).

This equation can be determined using the following approaches:

a) Direct Dynamic Equilibration Approach
b) Principle of Virtual Work (Energy Approach)



Equation of Motion

* The Direct Equilibrium using D'Alembert’s Principle will be employed in this lecture.
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D'Alembert’s Principle
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A particle mass m is subjected to a system of dynamic force vectors f(t),f2(t),f3(t)

a(t) is the acceleration of the particle mass m



Equation of Motion

Newton’s 2" |aw states that, “The rate of change of momentum of any mass m is equal to
the force acting on it”.

d d d?
[1O)+ f20+f3(0) = E(m :l?) =m ;t(zt) =ma(t)

D’Alembert’'s concept states that “A mass develops an inertia force in proportion to its

acceleration and opposing it”". _

F1() = —ma(®) AII dyn_amlc fo_rces_
(including the inertia force)
are in equilibrium:
Newton’s 2"9 law: f1O+ 20+ f3O)+f®) =0 Dynamic Equilibrium

This Is a very convenient concept in structure dynamics because its permits equations of motion to
be expressed as “equations of dynamic equilibrium?.



Equation of Motion

* The Direct Equilibrium using D'Alembert’s Principle will be employed in this lecture.

Dynamic Equilibrium
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D'Alembert’s Principle
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A particle mass m is subjected to a system of dynamic force vectors f(t),f2(t),f3(t)

a(t) is the acceleration of the particle mass m




Equation of Motion of One-story Building Subjected to Dynamic Force

Free-Body Diagram
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At any instantaneous time, the mass m is under the action of four types of dynamic forces.
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1. External dynamic force: p(t
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2. Inertia force:
f d?u(t)
t) = —m
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3. Elastic force:
fs t) = —ku(t)

where k is the lateral stiffness of the two columns combined. The negative sign means that the forces is always

in the opposite direction to the structural deformation (this is to bring the structure back to its neutral position).
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4. Damping force:
du(t) .
fp®) =—c T c u(t)

where ¢ is the damping coefficient of viscous damper. The units of ¢ are forcextime/length. The

negative sign means that the damping force is always in the opposite direction to velocity, hence it

always dissipates energy.



By the application of D’Alembert’s principle, the sum of all four forces must be zero.

[1O+ f20+ f3(O)+p(@®) =0
Or
d?u(t) du(t)

dt? T dt

+ku(t) p@

The vector can be converted to scalar function by

u) = u() i

du(t) B du(t) ;

dt dt
d?u(t) d?u(t)
acz dtz '
p) =p).1

p and u are a function of time. i is a unit length base vector.



Hence, the equation of motion in scalar form is

d?u(t) du(t)
+C
dt? dt

+ku(t) =p(t)

This is a second-order linear (ordinary) differential equation.



Problem Statement

Given:

a) The mass of the system (m),

b) Applied dynamic load p(t),

c) Lateral stiffness of the system (k), and

d) The damping coefficient of the system (¢)

Determine:

The displacement of the system u(t)
The other response quantities (e.g. the response

du(t) . d?ud)
. response acceleration 5
t dt

base

velocity

shear, overturning moment etc.) can be subsequently

derived from u(t).

LY
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Multi-Degree-of-Freedom Structures

« The example (idealized one-story) structure described earlier is a

single-degree-of-freedom system because its motion can be - U3 ()
completely describe by only one scalar function — u(t). :
\
[ 3 U, (D)
» A 3-story building is a three-degree-of-freedom system because at ,’
I
least 3 response functions (uq (t) u,(t) us(t)) are required to "?/I Uy (t)
completely describe the overall motion of this structure. /
/
{
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* The dynamics of multi-degree-of-freedom systems will be covered

in detail later. A three-degree-of-freedom system



Equation of Motion of One-story Building subjected to Earthquake
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Idealized structure

Consider a case when an SDF system is subjected to a lateral ground displacement u (t) .

This represents a simplified earthquake excitation (i.e. the ground motion is assumed to be
a one-dimensional lateral motion).

« There is no external force applied to this SDF system.
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Let’'s denote the ground displacement, ground velocity and ground acceleration as

du,(t) d?u,(t)
g g
Ug (1), dt ' dt?

The total displacement at the roof is defined by uf(t), where

ut(®) = uy @) +u@)

There are three dynamic forces acting on the roof mass:

u(t)

1. Elastic force f,(t) = —ku(t)
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2. Damping force fp(t) = —c¢ 7 . Free-body diagram
F Ug(t)
Each of these forces is a function of “relative” motion, Idealized structure

not the absolute (or total) motion. 19



Each of these forces is a function of “relative” motion, and not the absolute (or total) motion. However the
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mass undergoes an acceleration of 7
Therefore
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Idealized structure
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{”‘ Ug(t)

Applying the D’Alembert’s dynamic equilibrium to this case, we get,

d?u(t) du(t) d*u,(t)

m 772 +c Ir +ku(t) =—m BPTER

d?u(t) du(t) d?u, (t)

In scalar form, — oy 97
m 772 +c I + k u(t) m 7¢2

This equation of motion is the governing equation of structural deformation u (t), when the structure is

. ~dPug (D)
subjected to ground acceleration —



Equation of Motion of One-story Building subjected to

Earthquake
d?u(t) du(t) d*uy(t) d?u(t) du(t)
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Where )
d u,(t)
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= —mitg(t)
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Fixed Base

The deformation u (t) of the structure due to ground acceleration ilg(t) IS identical to the deformation

u (t) of the structure if its base were stationary and if it were subjected to an external force Pgsf (t) =

— midg(1).




Kinemetrics Altus K2 Strong Motion Accelerograph System

Applications

Structural monitoring arrays

Dense arrays, two and three
dimensional

Aftershock study arrays

Local, regional and national
seismic networks and arrays
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High Dynamic Range Strong Motion Accelerograph
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Earthquake Loading on Structures

FORCE = MASS x ACCELERATION
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Solution of Equation of Motion

Solution Methods

Classical Solution

Duhamel’s Integral

Frequency-Domain Method

Numerical Methods

v

Response under

Free Vibration
Harmonic Loading
Periodic Loading
Impulse Loading

Response under

Any General
Dynamic Loading




Types of Dynamic

Loading on Structures

Modified from “Clough and Penzien (2003)
Dynamics of Structures, 3rd Edition”.

Periodic

A

(a)

Unbalanced rotating (a) Harmonic
machine in building

(0)

Nonperiodic
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%5 Pedestrian bridge (b) Periodic
=

()

Loading histories
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Bomb blast pressure on (C) |mpu|5ive
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Typical examples
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