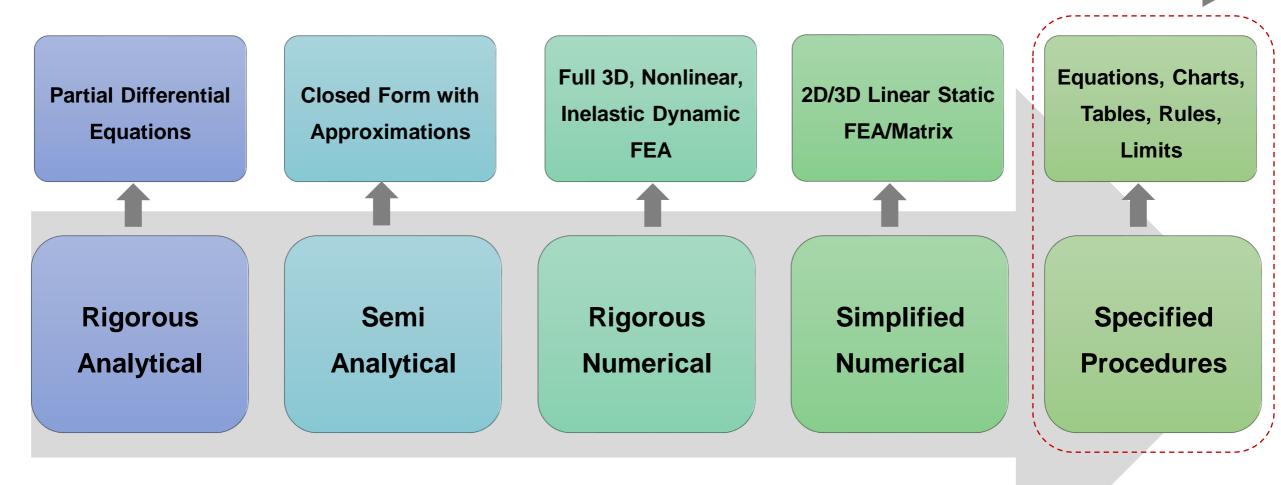
Credits: 3 + 0 CE - 842 - PG 2019 Spring 2020 Semester

Performance-based Seismic Design of Structures

Fawad A. Najam

Department of Structural Engineering NUST Institute of Civil Engineering (NICE) National University of Sciences and Technology (NUST) H-12 Islamabad, Pakistan Cell: 92-334-5192533, Email: fawad@nice.nust.edu.pk

Acknowledgement


- The material for the preparation of these lectures slides are taken from different sources.
- The primary source for these lecture slides are the lectures of Dr. Naveed Anwar at Asian Institute of Technology (AIT), Thailand
- Some other references of this training material include the following.
 - Class Notes of Prof. Dr. Worsak Kanok-Nukulchai at Asian Institute of Technology (AIT), Thailand
 - Training material developed by Mr. Thaung Htut Aung at AIT Solutions, AIT, Thailand
 - · Notes from various workshops conducted by Dr. Naveed Anwar
 - · Various International Codes and Guidelines
 - Lectures of Dr. Punchet Thammarak at Asian Institute of Technology (AIT), Thailand
 - Seminar notes from Computers and Structures Incorporated, USA
 - SAP2000 User and Technical Manuals
 - ETABS User and Technical Manuals
- The material is taken solely for educational purposes. All sources are duly acknowledged.

Dr. Naveed Anwar

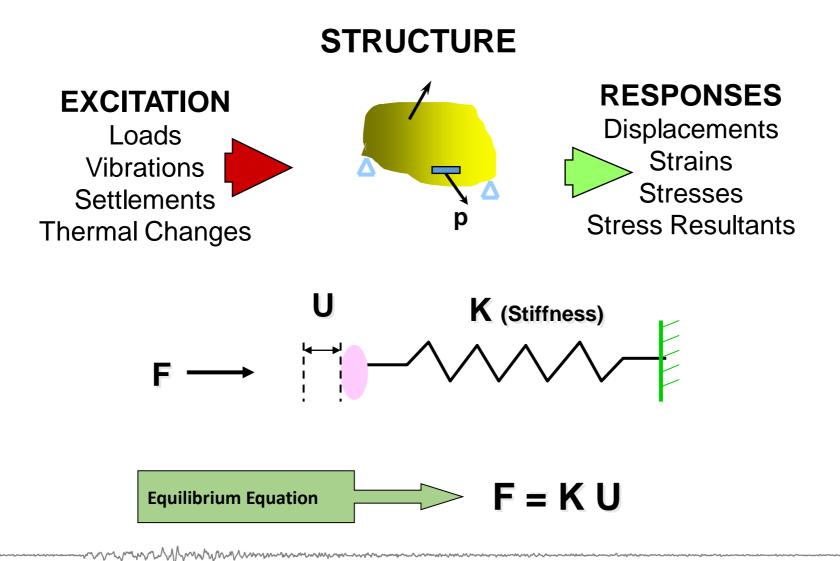
Lecture 4(b): Finite Element Modelling for Linear Elastic Analysis of Structures

- The Fundamental Principles of FE Analysis
- Structural Idealization
- Structural Discretization The Element Menu
 - Joint Elements
 - One Dimensional Elements
 - Two Dimensional Elements
 - Three Dimensional Elements
- Modelling of Structural Materials
- Load Patterns, Load Cases and Load Combinations
- Post-processing and Results

Seismic Analysis Procedures

Lecture 4(b)

Structural Model		Linear E, A, I, L, G etc. = Constant, K= Constant		Nonlinear E ≠ Constant, EI ≠ Constant, K≠ Constant		
Seismic Loading						
Statio	1.	Equivalent Lateral Force (ELF) Procedure	4.	NSPs (Several Pushover Analysis Methods)		
Static	2.	Response Spectrum Analysis (RSA) Procedure	┢			
Dynamic	3.	Linear Response History Analysis Procedure (LTHA, DI, LDP)	5.	Nonlinear Response History Analysis Procedure (NLRHA) NLTHA, NDP, DI		


Lecture 4(a)

Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

Fundamental Principles of FE Analysis

Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)

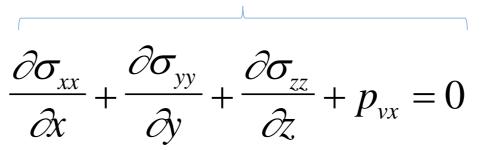
The Structural System

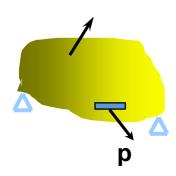
Performance-based Seismic Design of Buildings - Semester: Spring 2020 (Fawad A. Najam)

The Need For Analysis

• We need to determine the Response of the Structure to Excitations

Analysis

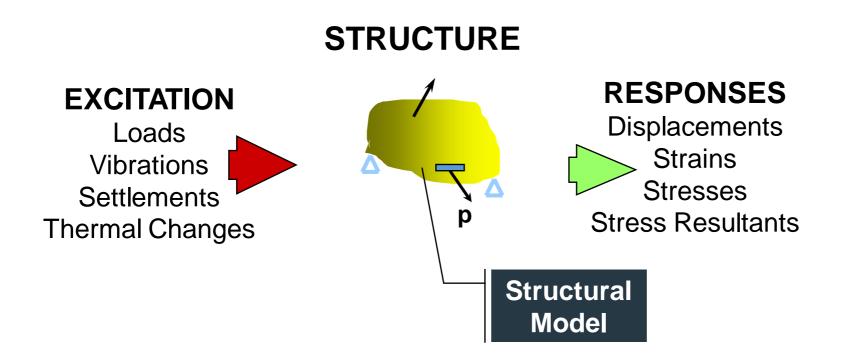

so that:


• We can ensure that the structure can sustain the excitation with an acceptable level of response

Design

Analysis of Structures

Equilibrium Equation: The Sum of Body Forces and Surface Tractions is equal to Zero

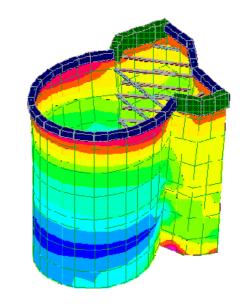


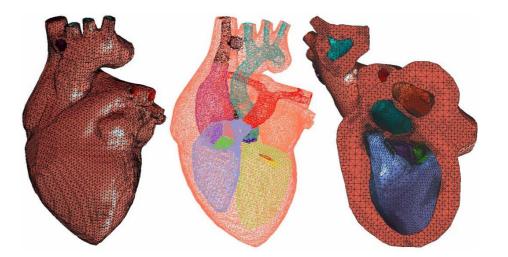
Real Structure is governed by "Partial Differential Equations" of various order

Direct solution is only possible for:

- Simple geometry
- Simple Boundary
- Simple Loading

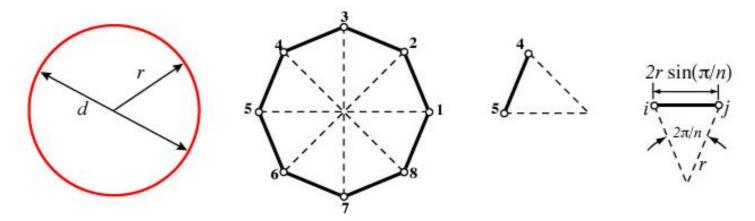
The Need for Structural Model




The Need for Modeling

- A Real Structure cannot be Analyzed:
 - It can only be "Load Tested" to determine response
- B We can only analyze a "Model" of the Structure
- C We therefore need tools to Model the Structure and to Analyze the Model

Finite Element Method: The Analysis Tool


- Finite Element Analysis (FEA)
 - "A discretized solution to a continuum problem using FEM"
- Finite Element Method (FEM)
 - "A numerical procedure for solving (partial) differential equations associated with field problems, with an accuracy acceptable to engineers"

A Brief History - Archimedes FEM

Archimedes' problem (*circa* 250 B.C.): rectification of the circle as limit of inscribed regular polygons

п	$\pi_n = n \sin(\pi/n)$	Exact π to 16 places
1	0.00000000000000000	
2	2.0000000000000000	
4	2.828427124746190	
8	3.061467458920718	
16	3.121445152258052	
32	3.136548490545939	
64	3.140331156954753	
128	3.141277250932773	
256	3.141513801144301	3.141592653589793

Computing π "by Archimedes FEM"

Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)

Brief History

- Grew out of aerospace industry
- Post-WW II jets, missiles, space flight
- Need for light weight structures
- Required accurate stress analysis
- Paralleled growth of computers

Developments

- 1940s
 - Hrennikoff (1941)
 Lattice of 1D bars
 - McHenry (1943)
 - Courant (1943)
 - Levy (1947, 1953)

Flexibility and Stiffness

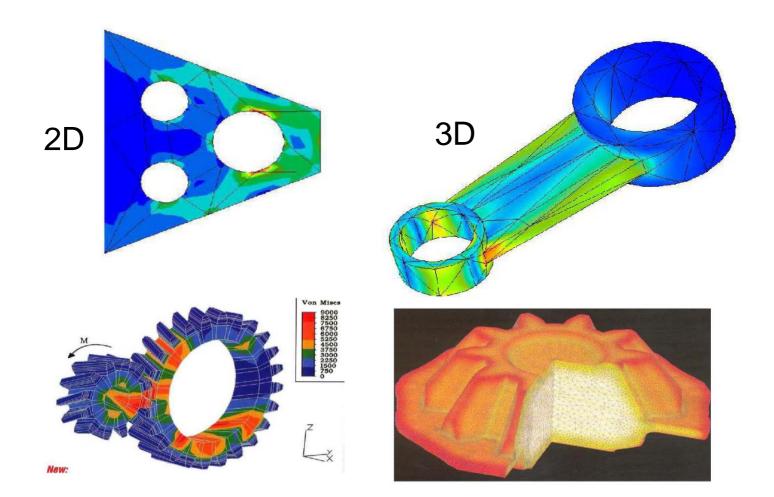
Model 3D solids

Variational form

- 1950-60s
 - Argryis and Kelsey (1954) Energy Principle for Matrix Methods
 - Turner, Clough, Martin and Topp (1956) 2D elements

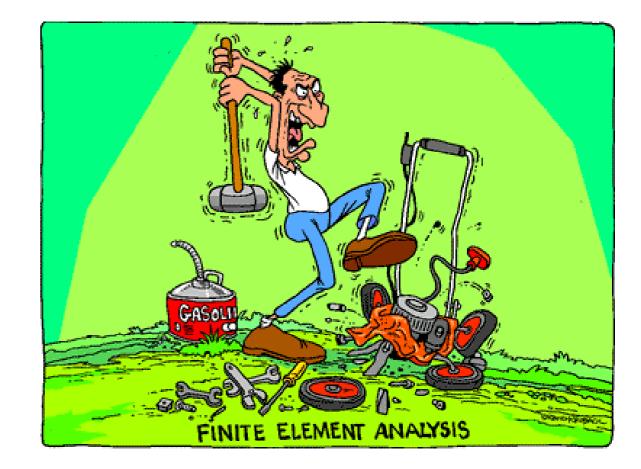
-

-

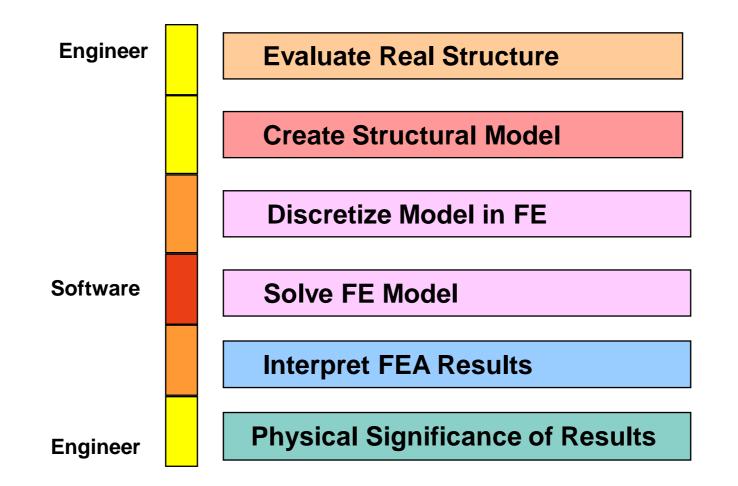

- Clough (1960) Term "Finite Elements"
- 1980s Wide applications due to:
 - Integration of CA/CAE automated mesh generation and graphical display of analysis results

- Powerful and low-cost computers
- 2000s FEA in CAD; Design Optimization in FEA; Nonlinear FEA; Better CAD/CAE Integration

Current Applications


- Mechanical/Aerospace/Civil/Automotive Engineering
- Structural/Stress Analysis
 - Static/Dynamic
 - Linear/Nonlinear
- Fluid Flow
- Heat Transfer
- Electromagnetic Fields
- Soil Mechanics
- Acoustics
- Biomechanics

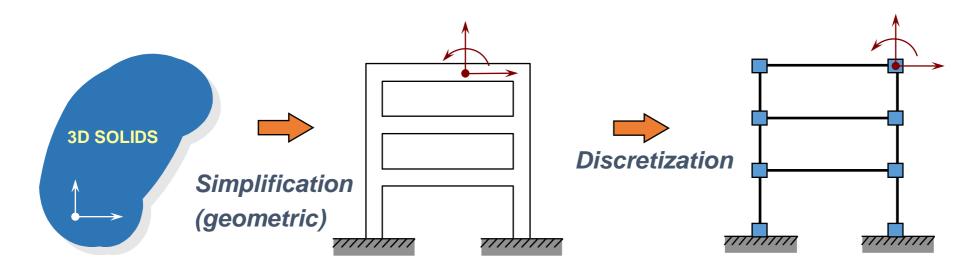
Finite Element Modelling - Examples



FEA Overall Process

- Prepare the FE Model
 - Discretize (mesh) the structure
 - Prescribe loads
 - Prescribe supports
- Perform calculations (solve)
 - Generate stiffness matric (k) for each element
 - Connect elements and assemble K
 - Assemble loads (into load vector F)
 - Impose supports conditions
 - Solve equations (KU = F) for displacements
- Post-processing (stress recovery etc.)

The Finite Element Analysis Process



Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

Structural Idealization

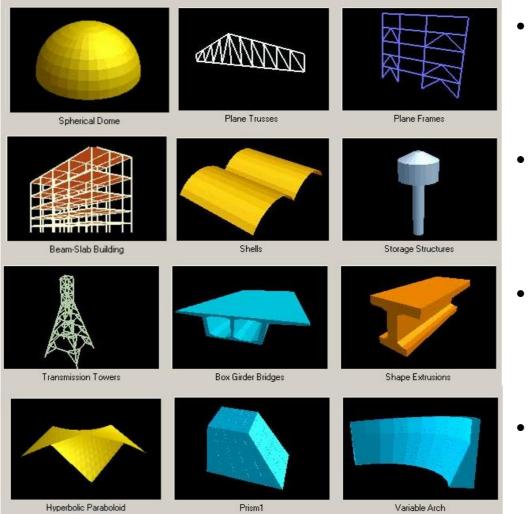
Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)

Solid – Structure - Model

3D-CONTINUUM MODEL

(Governed by partial differential equations)

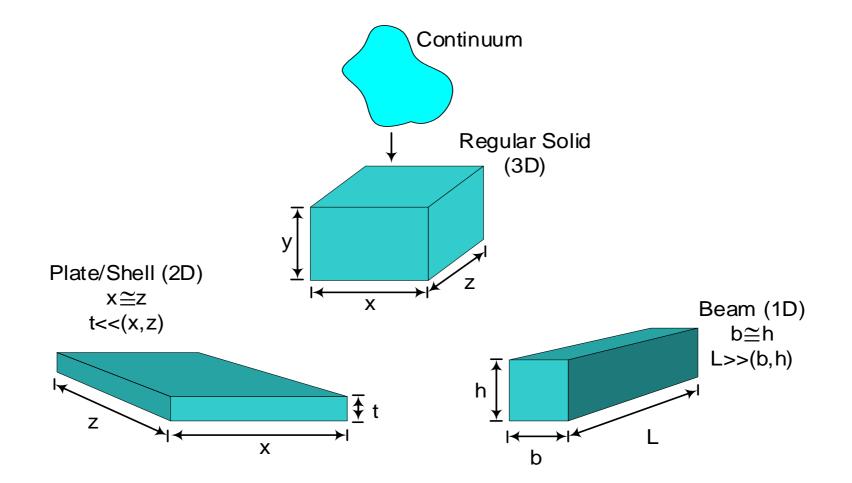
CONTINUOUS MODEL OF STRUCTURE (Governed by either partial or ordinary differential equations)


DISCRETE MODEL OF STRUCTURE (Governed by algebraic equations)

Continuum vs. Structure

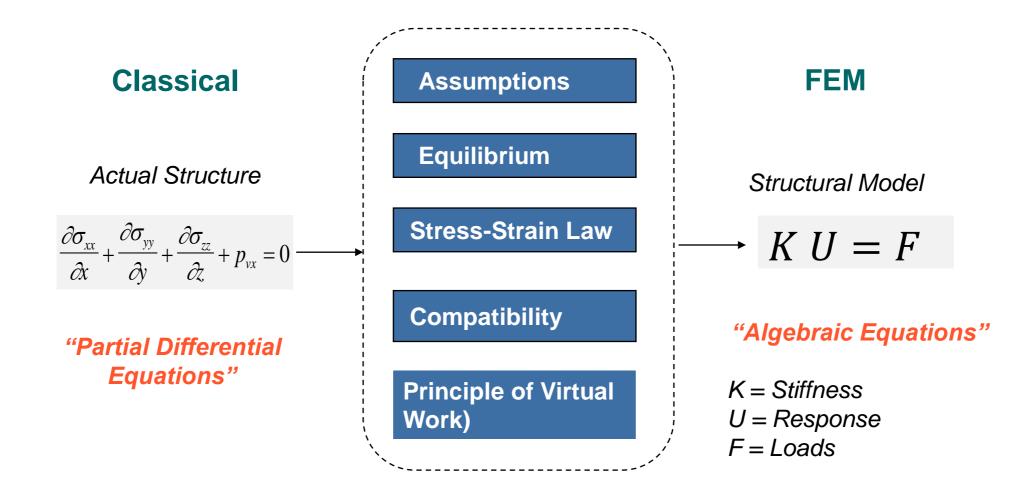
- A continuum extends in all direction, has infinite particles, with continuous variation of material properties, deformation characteristics and stress states.
- A structure is of finite size and is made up of an assemblage of substructures, components and members.

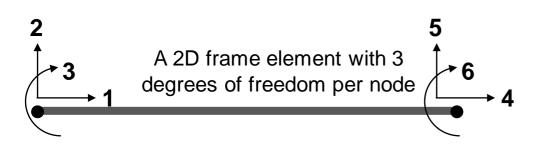
- Structures can be categorized in many ways. For modeling and analysis purposes, the overall physical behavior can be used as basis of categorization.
 - Cable or Tension Structures
 - Skeletal or Framed Structures
 - Surface or Spatial Structures
 - Solid Structures
 - Mixed Structures

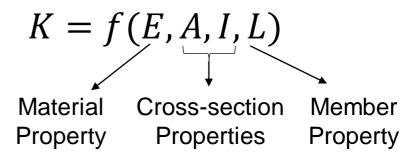

Structure Types

- Cable Structures
 - Cable Nets
 - Cable Stayed
- Bar Structures
 - 2D/3D Trusses
 - 2D/3D Frames, Grids
- Surface Structures
 - Plate, Shell
 - In-Plane, Plane Stress
- Solid Structures

Performance-based Seismic Design of Buildings - Semester: Spring 2020 (Fawad A. Najam)

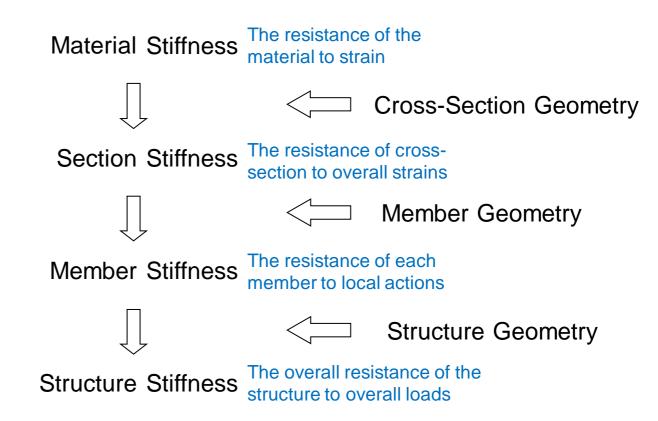

Structural Idealization


Dimensional Hierarchy of Structural Members


Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

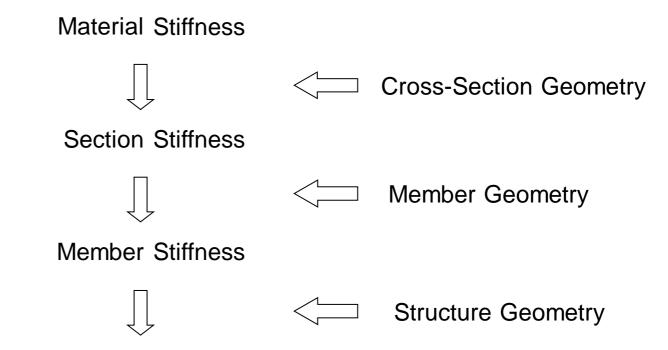
From Classical to FEM Solution

What is Stiffness (K) "made off"?



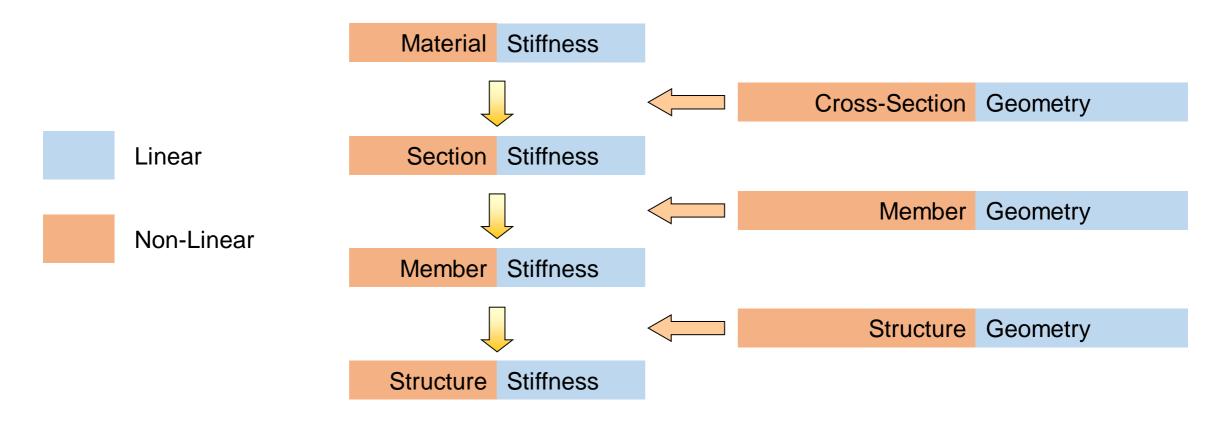
$$K = \begin{pmatrix} EA/L & 0 & 0 & -EA/L & 0 & 0 \\ 0 & 12EI/L^3 & 6EI/L^2 & 0 & -12EI/L^3 & 6EI/L^2 \\ 0 & 6EI/L^2 & 4EI/L & 0 & -6EI/L^2 & 2EI/L \\ -EA/L & 0 & 0 & EA/L & 0 & 0 \\ & -12EI/L^3 & -6EI/L^2 & 0 & 12EI/L^3 & -6EI/L^2 \\ 0 & 6EI/L^2 & 2EI/L & 0 & -6EI/L^2 & 4EI/L \end{pmatrix}$$

Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)

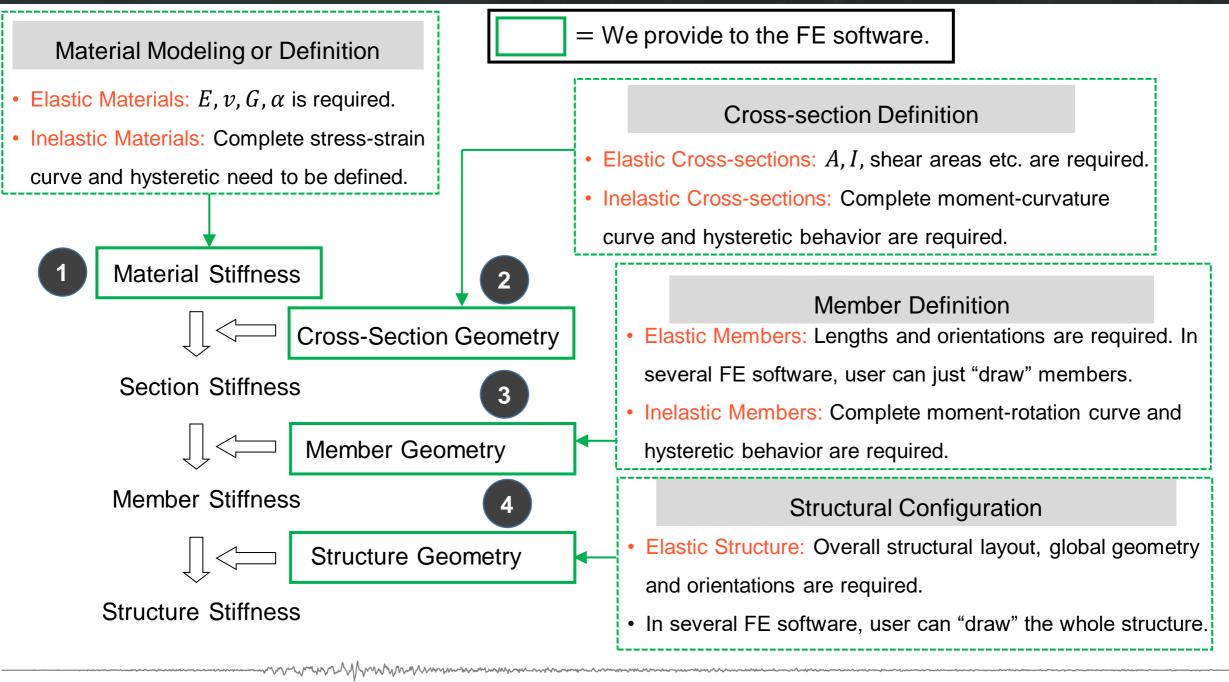

What is Stiffness (K) "made off"?

- The overall stiffness of the structure is derived from the overall geometry and connectivity of the members, their stiffnesses, and the boundary conditions.
- The member stiffness is derived from the cross-section stiffness, and member geometry.
- The cross-section stiffness is derived from the material stiffness and the cross-section geometry.
- All of these stiffness relationships may be linear or nonlinear.

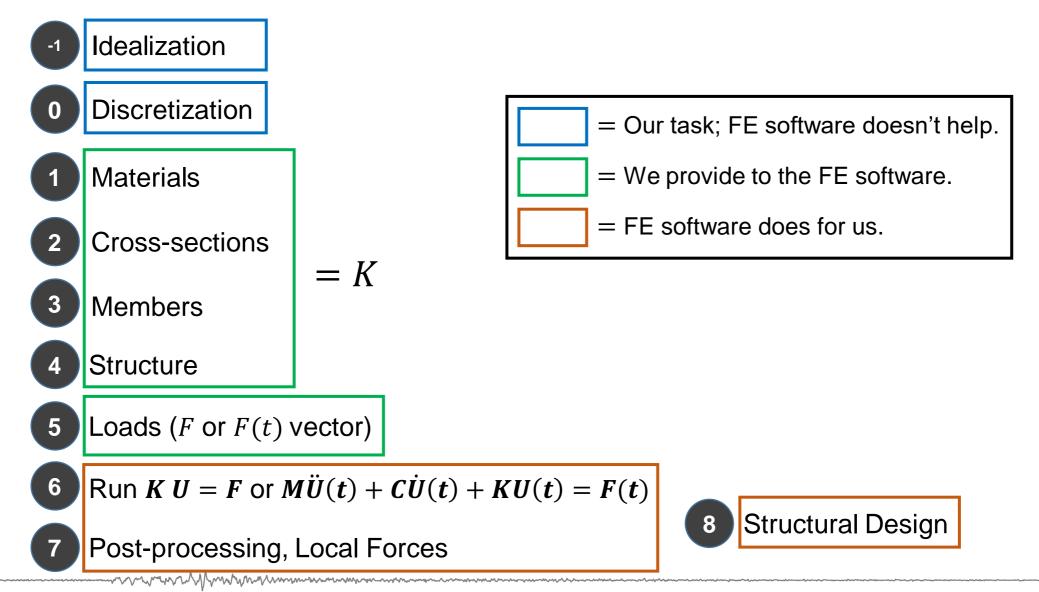
"Actual" Stiffness Estimation Influenced by


- The state of the structure at any given time
 - Damage
 - Deformation
 - Cracking
 - Creep/Shrinkage
 - Stress-state

Structure Stiffness


The Global Structure Stiffness - K

 $M\ddot{u} + C\dot{u} + Ku = F$


Nonlinear Modeling is a topic for Lecture 6 (b)

Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

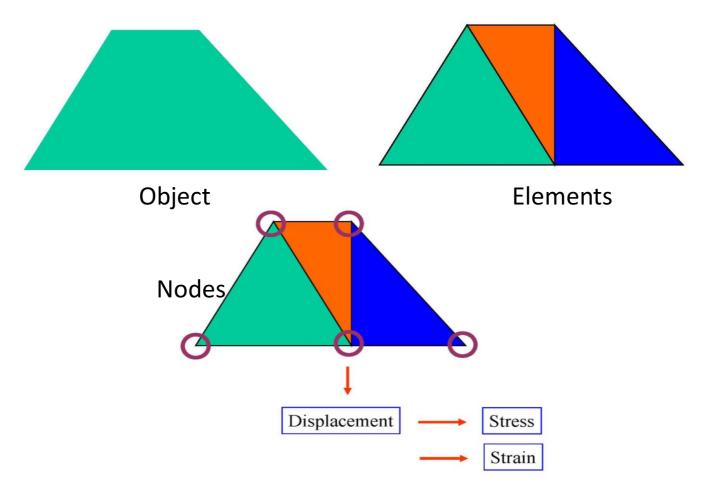
Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)

Finite Element Modeling, Analysis and Design Process

Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)

Structure, Members, Elements

- Structure can be considered as an assemblage of "Physical Components" called Members.
 - Slabs, Beams, Columns, Footings, etc.
- Physical Members can be modeled by using one or more "Conceptual Components" called Elements.


- 1D elements, 2D element, 3D elements
- Frame element, plate element, shell element, solid element, etc.

Nodes and Finite Elements

- The Finite Elements are discretized representation of the continuous structure.
- Generally they correspond to the physical structural components but sometimes dummy or idealized elements may also be used.
- Elements behavior is completely defined within its boundaries and is not directly related to other elements.
- Nodes are imaginary points which serve to provide connectivity across element boundaries.

Solid – Structure - Model

Discretization

Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

Basic Categories of Finite Elements

• 1 D Elements

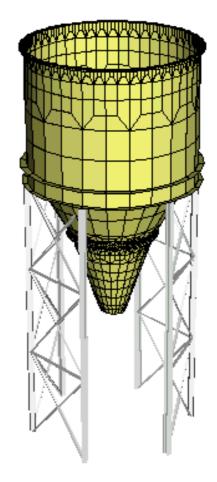
- Only one dimension is actually modeled as a line, other two dimensions are represented by stiffness properties
- Can be used in 1D, 2D and 3D Model

• 2 D Elements

 Only two dimensions are actually modeled as a surface, third dimension is represented by stiffness properties

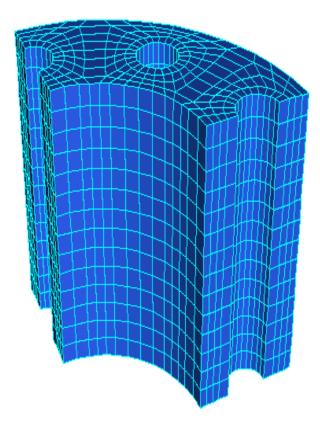
Can be used in 2D and 3D Model

• 3 D Elements

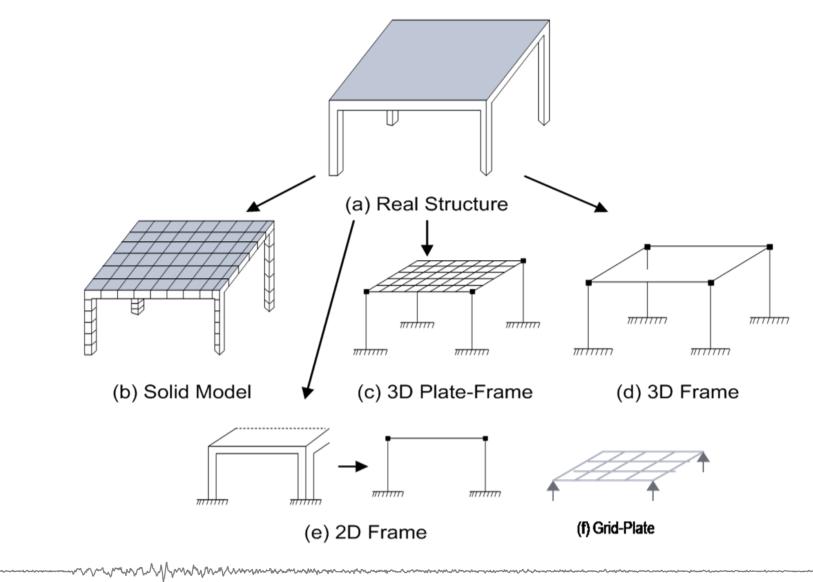

- All three dimensions are modeled as a solid
- Can be used in 3D Model

Global Modelling or "Macro Model"

- A model of the Whole Structure
- Objective is to get Overall Structural Response
- Results in the form of member forces and stress patterns
- Global Modeling is same for nearly all materials and material distinction is made by using specific material properties
- Global Model may be a simple 2D beam/ frame model or a sophisticated full 3D finite element model.

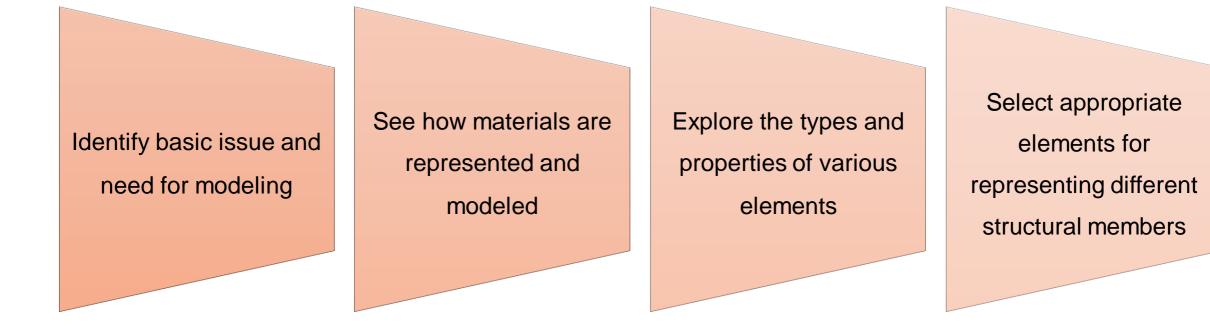

htel was a second of the second s

• Generally adequate for design of usual structures.



Local Model or "Micro Model"

- Model of Single Member or part of a Member
- Model of the Cross-section, Opening, Joints, connections etc.
- Objective is to determine local stress concentration, cross-section behavior, modeling of cracking, bond, anchorage etc.
- Needs finite element modeling using very fine mesh, advance element features, non-linear analysis etc.
- Mostly suitable for research, simulation, experiment verification and theoretical studies.



Global Modelling of Structural Geometry - Various Ways to Model a Real Structure

Performance-based Seismic Design of Buildings - Semester: Spring 2020 (Fawad A. Najam)

The Selection of Elements

Current Modelling Trends – Object Based Modelling

 In several software, the Graphic Objects representing the Structural Members are automatically divided into Finite Elements for analysis → Object-based Modeling

- This involves
 - Auto Meshing
 - Auto Load Computation
 - Auto Load Transfer

Object Based Modelling

- Level-1
 - The Nodes are defined first by coordinates and then Elements are defined that connect the nodes
- Level-2
 - The Elements are defined directly, either numerically or graphically and the Nodes are created automatically
- Level-3
 - The structure is represented by generic Objects and the elements and Nodes are created automatically

SAP/ETABS (Objects → Elements)

- The physical structural members in a structural model are represented by objects.
- Using the graphical user interface, you "draw" the geometry of an object, then "assign" properties and loads to the object to completely define the model of the physical member.
- For analysis purposes, SAP2000 converts each object into one or more (finite) elements and develop an "analysis model".

SAP/ETABS (Objects → Elements)

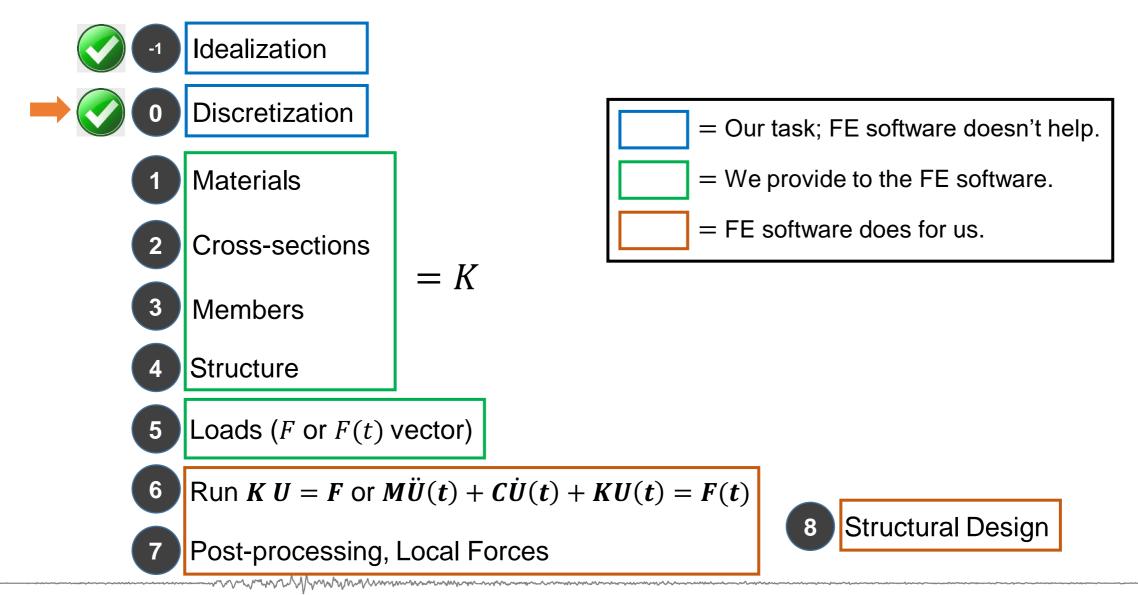
The following object types are available, listed in order of geometrical dimension:

- Point objects, are of two types:
 - Joint objects: Automatically created at the corners or ends of all other types of objects; also can be explicitly added to represent supports or to capture other localized behavior.
 - Grounded (one-joint) link/support objects: Used to model special member behavior
- Line objects, are of four types
 - Frame objects: Used to model beams, columns, braces, and trusses
 - Cable objects: Used to model slender cables under self weight and tension
 - Tendon objects: Used to prestressing ten dons within other objects
 - Connecting (two-joint) link/support objects: Used to model special member behavior

www.meholich/www.mehoneweren

- Area objects: Shell elements (plate, membrane, and full-shell) used to model walls, floors, and other thin-walled members)
- Solid objects: Used to model three-dimensional solids.

SAP/ETABS (Objects → Elements)

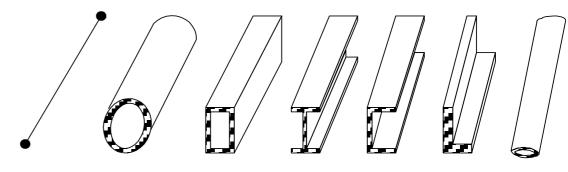

- When you run an analysis, SAP/ETABS automatically converts your **object-based model** into an **element-based model** that is used for analysis.
- This finite element-based model is called the **analysis model**, and it consists of traditional finite elements and joints (nodes).
- Results of the analysis are reported back on the object-based model.
- Group:

A group is a named collection of objects that you define. For each group, you must provide a unique name, then select the objects that are to be part of the group. You can include objects of any type or types in a group. Each object may be part of one of more groups.

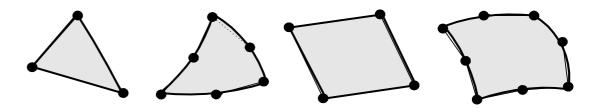
Structural Discretization – The Element Menu

Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)

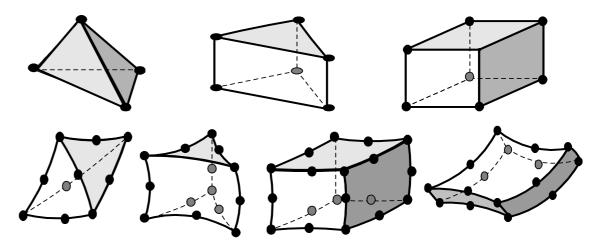
Finite Element Modeling, Analysis and Design Process



Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)


Some Finite Elements

- Not all of these finite elements are available in SAP/ETABS.
- ABAQUS CAE
- ANSYS
- DIANA FEA
- OPENSEES
- Agros2D
- DUNE
- Femap
- GOMA
- GetFEM++


- Robot
- STAAD Pro
- ADINA
- LS DYNA
- Nastran
- Visual FEA

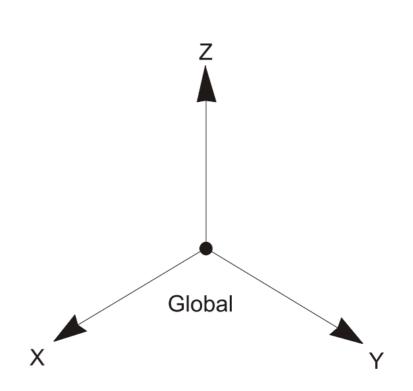
Truss and Beam Elements (1D,2D,3D)

Plane Stress, Plane Strain, Axisymmetric, Plate and Shell Elements (2D,3D)

Brick Elements

Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

Joints, Degrees of Freedom, Boundary Conditions and Constraints


Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

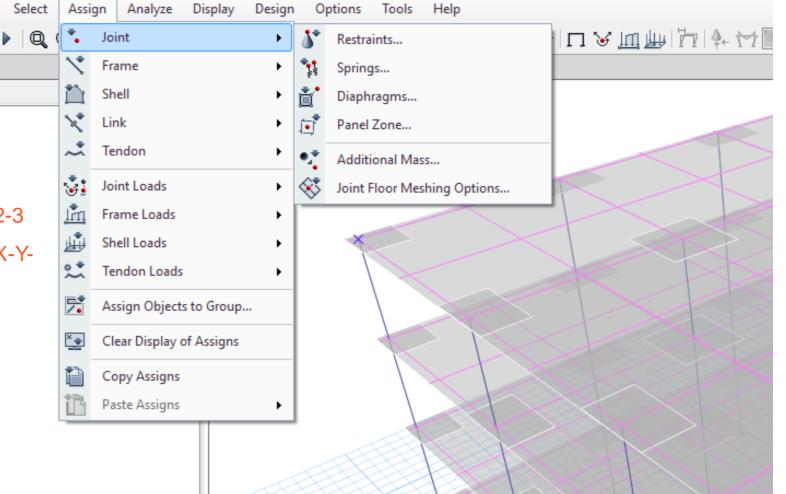
Global Coordinate System in SAP/ETABS

- SAP2000/ETABS always assumes that Z is the vertical axis, with +Z being upward.
- Local coordinate systems for joints, elements, and groundacceleration loading are defined with respect to this upward direction.
- Self-weight loading always acts downward, in the -Z direction.

htel Were and the second s

• The X-Y plane is horizontal.

Joint Elements

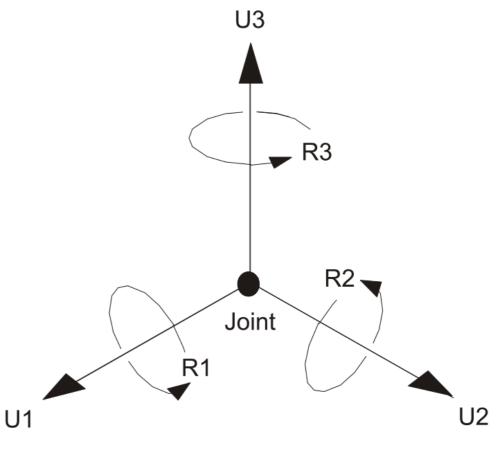

- Joints, also known as nodal points or nodes, are a fundamental part of every structural model.
- Joints are the primary locations in the structure at which the displacements are known (i.e. the supports) or are to be determined.
- In SAP/ETABS, a joint is defined by specifying its label and three spatial coordinates that locate the joint in space.
 - All elements are connected to the structure at the joints.
 - The structure is supported at the joints using Restraints and/or Springs.
 - Rigid-body behavior and symmetry conditions can be specified using Constraints that apply to the joints.

- Concentrated loads may be applied at the joints.
- Lumped masses and rotational inertia may be placed at the joints.
- Panel Zones can be assigned to joints.
- Loads and masses applied to the elements are transferred to the joints.

Joint Elements

Local Coordinates of Joint Elements:

In SAP/ETABS, by default, the joint local 1-2-3 coordinate system is identical to the global X-Y-Z coordinate system



raw

rts

Degrees of Freedom

- Every joint of the structural model may have up to six displacement components or degrees of freedom.
 - The joint may translate along its three local axes. These translations are de-noted U1, U2, and U3.
 - The joint may rotate about its three local axes. These rotations are denoted R1, R2, and R3.

Three Translations and Three Rotations

Degrees of Freedom

- Each degree of freedom in the structural model must be one of the following types:
 - Active the displacement is computed during the analysis
 - Restrained the displacement is specified, and the corresponding reaction is computed during the analysis
 - Constrained —the displacement is determined from the displacements at other degrees of freedom
 - Null the displacement does not affect the structure and is ignored by the analysis

• Unavailable —the displacement has been explicitly excluded from the analysis

Degrees of Freedom - Availability

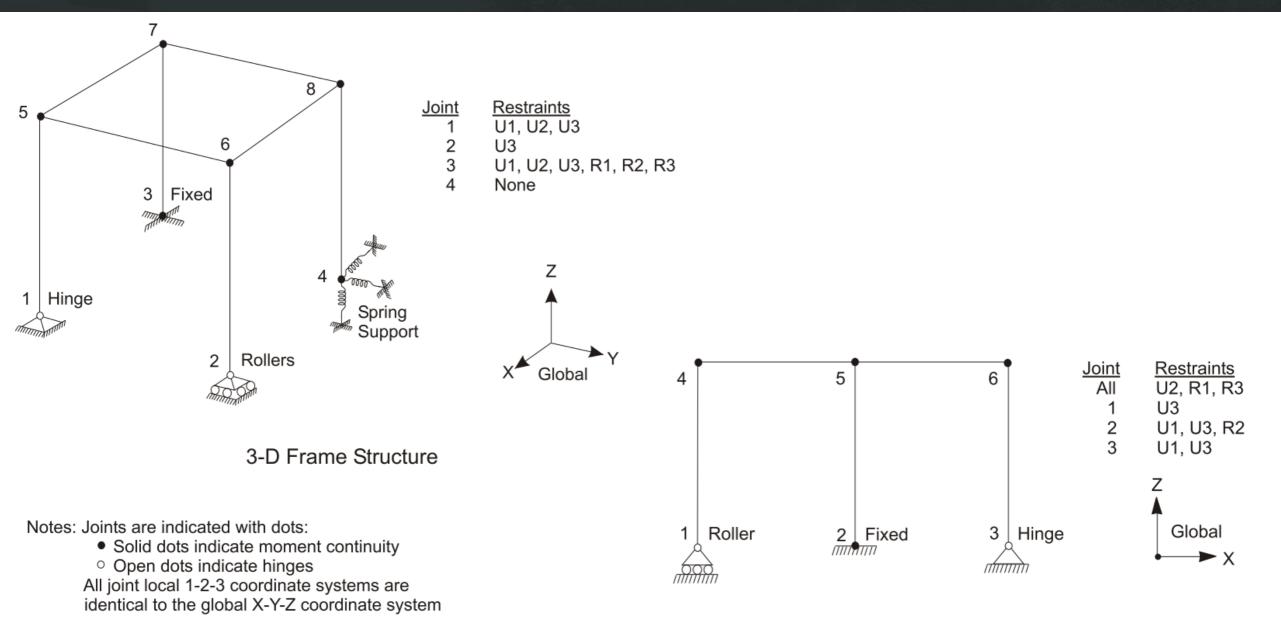
- By default, all six degrees of freedom are available to every joint. This default should generally be used for all three-dimensional structures.
- The degrees of freedom that are not specified as being available are called unavailable degrees of freedom.
- Any stiffness, loads, mass, restraints, or constraints that are applied to the unavailable degrees of freedom are **ignored by the analysis**.

Constrained Degrees of Freedom

- Any joint that is part of a Constraint may have one or more of its available degrees of freedom constrained.
- The program automatically creates a master joint to govern the behavior of each Constraint.
- The displacement of a constrained degree of freedom is then computed as a linear combination of the displacements along the degrees of freedom at the corresponding master joint.
- A degree of freedom may not be both constrained and restrained.

Restrained Degrees of Freedom

- If the displacement of a joint along any one of its available degrees of freedom is known, such as at a support point, that degree of freedom is restrained.
- The known value of the displacement may be zero or non-zero, and may be different in different Load Cases.
- The force along the restrained degree of freedom that is required to impose the specified restraint displacement is called the **reaction**, and is determined by the analysis.
- Unavailable degrees of freedom are essentially restrained.

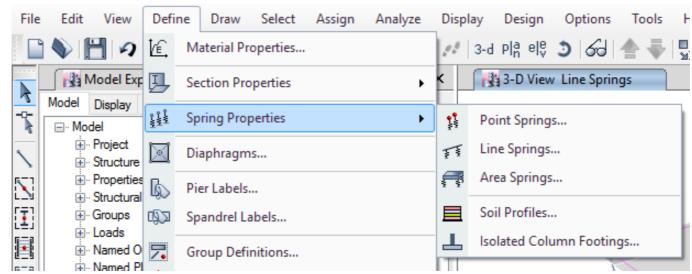

Modelling of Boundary Conditions

- Restraint Supports
- Spring Supports
- Nonlinear Supports
- Distributed Spring Supports

Modelling of Boundary Conditions – Restraint Supports

- Restraints are always applied to the joint local degrees of freedom U1, U2, U3, R1, R2, and R3.
- If a restraint is applied to an unavailable degree of freedom, it is ignored. The displacement will be zero, but no reaction will be computed.

x



2-D Frame Structure, X-Z plane

Performance-based Seismic Design of Buildings - Semester: Spring 2020 (Fawad A. Najam)

Modelling of Boundary Conditions – Spring Supports

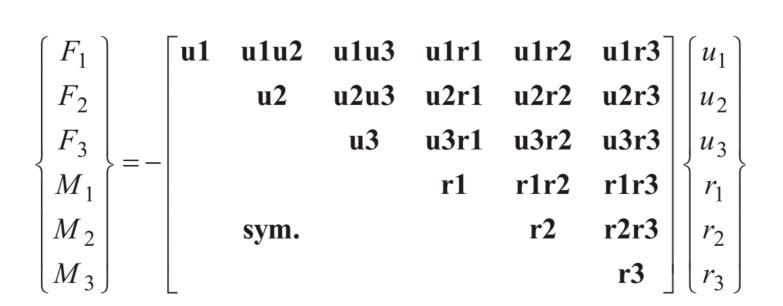
- Any of the six degrees of freedom at any of the joints in the structure can have translational or rotational spring support conditions. These springs elastically connect the joint to the ground.
- Springs may be specified that couple the degrees of freedom at a joint. The spring forces that act on a
 joint are related to the displacements of that joint by a 6x6 symmetric matrix of spring stiffness
 coefficients. These forces tend to oppose the displacements.

📳 ETABS Ultimate 17.0.1 - ads

wallowwww.

Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)

Stiffness Matrix for Spring Element


• In a joint local coordinate system, the spring forces and moments F_1 , F_2 , F_3 , M_1 , M_2 and M_3 at a joint are given by:

$\int F$	L]	u1	u1u2	u1u3	u1r1	u1r2	u1r3	$\left(u_{1} \right)$
F_{2}	2		u2	u2u3	u2r1	u2r2	u2r3	$ u_2 $
$\int F_{1}$	3 [_			u3	u3r1	u3r2	u3r3	$ u_3 $
$\int M$	$1 \int_{1}^{1}$				r1	r1r2	r1r3	r_1
M	2		sym.			r2	r2r3	$ r_2 $
$ \begin{bmatrix} F \\ F \\ F \\ F \\ M \\ M \\ M \end{bmatrix} $	3						r3 _	$\begin{bmatrix} r_3 \end{bmatrix}$

where u₁, u₂, u₃, r₁, r₂ and r₃ are the joint displacements and rotations, and the terms u1, u1u2, u2,
 ... are the specified spring stiffness coefficients.

Modelling of Boundary Conditions – Spring Supports

- For springs that do not couple the degrees of freedom in a particular coordinate system, only the six diagonal terms need to be specified since the off-diagonal terms are all zero.
- When **coupling is present**, all 21 coefficients in the upper triangle of the matrix must be given; the other 15 terms are then known by symmetry.

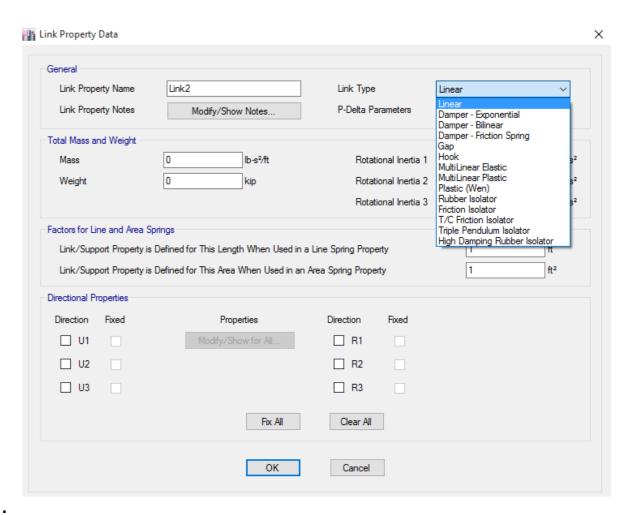
www.

Coupled Spring Restraints

Coupled 6x6 user-defined spring stiffness

option

Upper Stiffness Ma	atrix				
u1	u2	u3	1	r2	r3
u1 0.	0.	0.	0.	0.	0.
u2 0.	0.	0.	0.	0.	0.
u3 0.	0.	50.	0.	0.	0.
r1 0.	0.	0.	0.	0.	0.
r2 0.	0.	0.	0.	0.	0.
r3 0.	0.	0.	0.	0.	0.



 Independent springs stiffness in each DOF

Jo	Joint Springs						
	Spring Stiffness i	n Local Direction					
	Translation 1	0.					
	Translation 2	0.					
	Translation 3	50.					
	Rotation about 1	0.					
	Rotation about 2	0.					
	Rotation about 3	0.					

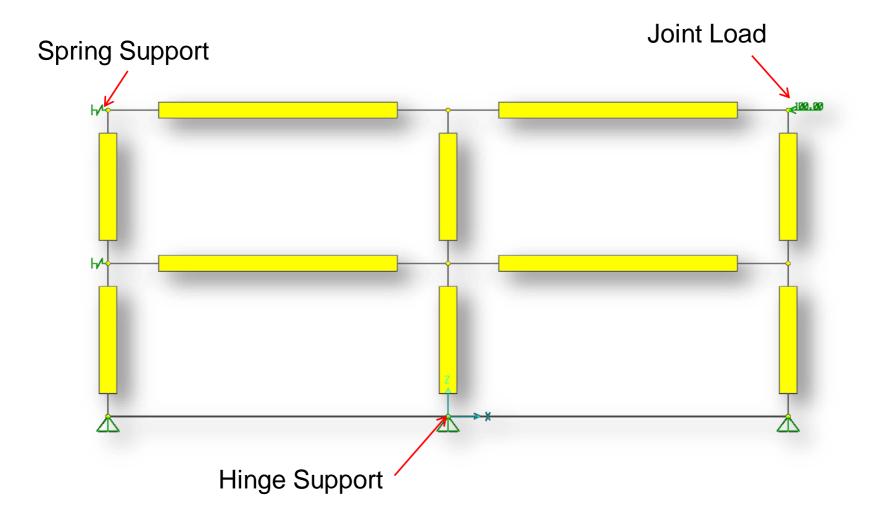
Modelling of Boundary Conditions – Nonlinear Supports

- Nonlinear support conditions that can be modeled include gaps (compression only), multi-linear elastic or plastic springs, viscous dampers, base isolators, and more.
- This Link/Support can be used in two ways:
 - You can add (draw) a one-joint object, in which case it is considered a Support object, and it connects the joint directly to the ground.
 - The object can also be drawn with two joints, in which case it is considered Link object. You can use a Link object as a support if you connect one end to the structure, and fully restrain the other end.

Modelling of Boundary Conditions – Link Supports

Link2		O Stiffness	Is Uncoupled		Stiffness	is Coupled	0
		U1	U2	U3	R1	R2	R3
Directional Control	U1	0	0	0	0	0	0
Direction Fixed	U2		0	0	0	0	0
🗸 U1 🗌 Yes	U3			0	0	0	0
V2 Yes	R1				0	0	0
	R2					0	0
U3 Yes	R3						0
R1 Yes							
✓ R2 Yes	opper L		(Symmetrical) Use s Uncoupled	d For All Analys	Damping k	s Coupled	0
R3 Yes		U1	U2	U3	R1	R2	R3
	U1	0	0	0	0	0	0
Shear Distance	U2		0	0	0	0	0
	U3			0	0	0	0
U2 0 ft	R1				0	0	0
U2 0 ft U3 0 ft						0	0
	R2				_		0

Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)


Modelling of Boundary Conditions – Distributed Spring Supports

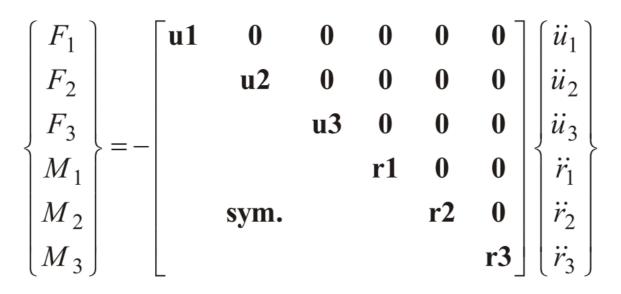
- You may assign distributed spring supports along the length of a Frame element, or over the any face of an area object (Shell, Plane, Asolid) or Solid element.
- These springs may be linear, multi-linear elastic, or multi-linear plastic.
- These springs are converted to equivalent two-joint Link/Support elements acting at the joints of the element, after accounting for the tributary length or area of the element. The generated Link/Support elements are of zero length, with one end connected to the parent object, and the other end connected to a generated joint that is fully restrained.

File	Edit	View	Defi	ne	Draw	Select	Assign	Analyze	Displa	ay	Design	Options	Tools	F
) 💊 []	1	K.	М	aterial Pro	operties			22	3-d	$p _n^a \; e _v^e$	3 69		
	- [🏙 I	Model Exp	IJ	Se	ction Pro	perties		•	<		3-D View	Line Sprin	gs	
	Model	Display	1 ° ° °	Sp	ring Prop	perties		•	₽ ₽	Po	int Spring	s		1
$\overline{\overline{\ }}$	÷	Project Structure		Di	aphragm	s			ŢŢ	Lin	ie Springs.			
\mathbf{N}		Properties Structural		Pi	er Labels.					Are	ea Springs			
[፤]		Groups	۵D	Sp	andrel La	ibels				Soi	il Profiles			
	÷.			Gr	oup Defi	nitions			4	lso	lated Colu	ımn Footin	gs	J
678	+ ·	Named PI										1		

Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

Joints in FE Model

Joint Masses


- In a dynamic analysis, the mass of the structure (*M* Matrix) is used to compute inertial forces.
- Normally, the mass is obtained from the elements using the mass density of the material and the volume of the element. This automatically produces lumped (uncoupled) masses at the joints. The element mass values are equal for each of the three translational degrees of freedom. No mass moments of inertia are produced for the rotational degrees of freedom. This approach is adequate for most analyses.
- It is often necessary to place additional concentrated masses and/or mass moments of inertia at the joints. These can be applied to any of the six degrees of freedom at any of the joints in the structure.
- For computational efficiency and solution accuracy, SAP2000 always uses lumped masses. This means that there is **no mass coupling between degrees of freedom** at a joint or between different joints. These uncoupled masses are always referred to the local coordinate system of each joint. Mass values along restrained degrees of freedom are ignored.

www.mepsill.when the second se

int Assignment - Addit	
Masses in Global Direc	tions
Direction X, Y	Ib-s²/ft
Direction Z	0 lb-s²/ft
Mass Moment of Inertia	a in Global Directions
Rotation about X	0 kip-ft-s²
Rotation about Y	0 kip-ft-s ²
Rotation about Z	0 kip-ft-s ²
Options	
 Add to Existing 	Masses
Replace Existin	g Masses
 Delete Existing 	Masses
ОК	Close Apply

Joint Masses

• Inertial forces acting on the joints are related to the accelerations at the joints by a 6x6 matrix of mass values. These forces tend to oppose the accelerations. In a joint local coordinate system, the inertia forces and moments F_1 , F_2 , F_3 , M_1 , M_2 and M_3 at a joint are given by:

where \ddot{u}_1 , \ddot{u}_2 , \ddot{u}_3 , \ddot{r}_1 , \ddot{r}_2 , \ddot{r}_3 are the translational and rotational accelerations at the joint, and the terms **u1**, **u2**, **u3**, **r1**, **r2**, and **r3** are the specified mass values.

Panel Zones

- Panel zones are assigned to joints to model the flexibility of beamcolumn connections. Panel zones may be linear or nonlinear, and may affect the following performance measures:
 - Structural drift
 - Structural period
 - Moment distribution ٠

yμ	enc	minance measures.							_
	Defi	ne Draw Select Assign Analyze	Disp	lay Design Options Tools Help		Doubler Plate Thick	kness	0	in
	K.	Material Properties	· ·	3-d PIA el\$ 🧿 🔏 📥 🌇 🖸	0) Specified Spring Prop	perties		
			<u> </u>		_	Major Moment/Rota	ation		kip-in/rad
	Ŀ	Section Properties	Þ	Frame Sections		Minor Moment/Rota	ation		kip-in/rad
on		Spring Properties	۲	Tendon Sections	C) Specified Link Proper	ty	,	
		Diaphragms	7	Slab Sections		Property			
	ß	Pier Labels		Deck Sections) Auto Inelastic Propert	ties Based on ASCE 41	-13 and Doubler Plate	
	ŝ	Spandrel Labels		Wall Sections		Doubler Plate Thick			in
	7.	Group Definitions	1	Reinforcing Bar Sizes				Madifier (Channe	
	2 2	Section Cuts	ĸ	Link/Support Properties) User Auto Inelastic Pr	roperties	Modify/Show	
	*fx	Functions	1 ¹	Frame/Wall Nonlinear Hinges	Conn	nectivity	Local Axis		
	~	Generalized Displacements	(Ē	Panel Zone) Beam - Column	From Column	1	
					0) Beam - Brace	 Angle 		deg
_	. 'I		1	T-LL-	C	Brace - Column			
av	alla	ble through Display > S	no۱	v ladies >					
me	nt ()utput > Panel Zone Ou	itou	t diama di d			ОК	Cancel	

👪 Panel Zone Data

General

Properties

Property Name

Property Notes

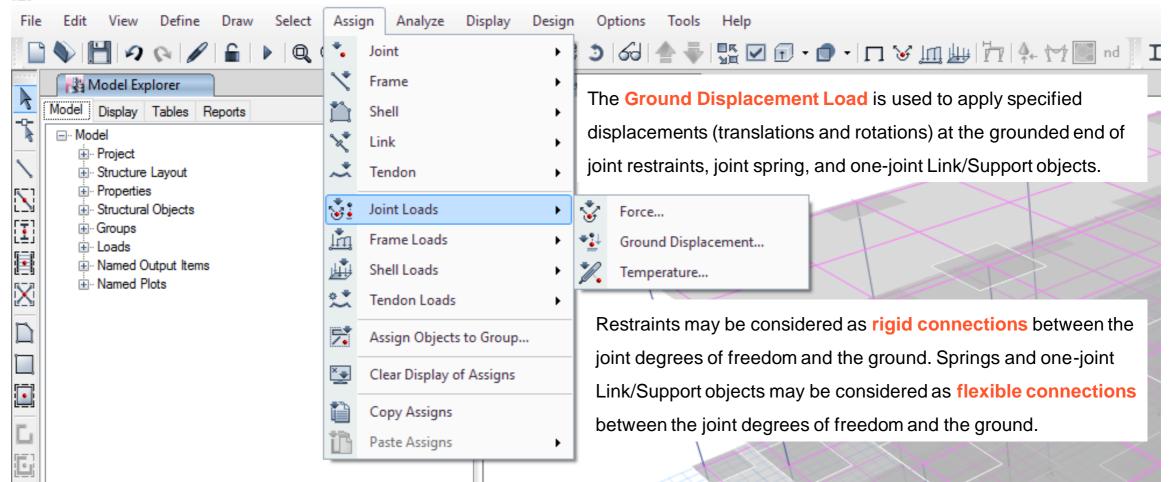
PZone1

Elastic Properties from Column and Doubler Plate

Modify/Show ...

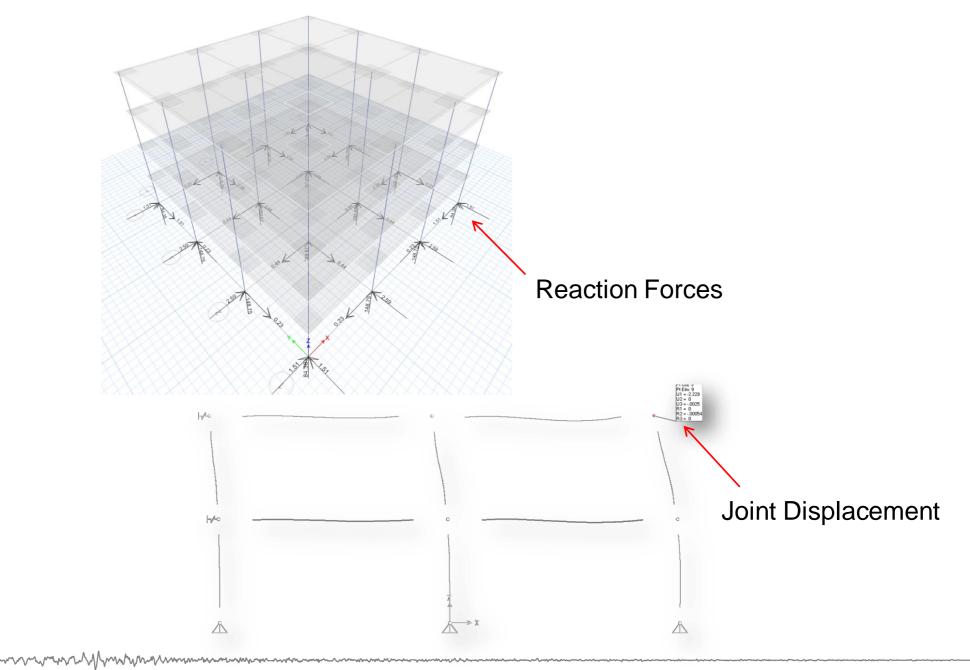
 Panel-zone results are Analysis Results > Element Output > Panel Zone Output Х

Panel Zones


- Studies have shown that not accounting for the deformation within a beam-column panel zone in a model may cause a significant discrepancy between the analytical results and the physical behavior of the building.
- ETABS allows for the explicit incorporation of panel zone shear behavior and it is believed to have an appreciable impact on the deformation at the beam-to-column connection.
- Mathematically, panel zone deformation is modeled using springs attached to rigid bodies geometrically the size of the panel zone. ETABS allows the assignment of a panel zone "property" to a point object at the beam-column intersection. The properties of the panel zone may be determined in one of the following four ways:
 - 1) Automatically by the program from the elastic properties of the column.
 - 2) Automatically by the program from the elastic properties of the column in combination with any doubler plates that are present.
 - 3) User-specified spring values.
 - 4) Users-specified link properties, in which case it is possible to have inelastic panel zone behavior if performing a nonlinear time history analysis. Link properties may also be used to specify panel zone behavior for beam to brace and brace to column connections.

Property Name	PZone1			erty Data	0	
	1 23101			sic Properties Strength Loss Acceptance	Criteria	
			~	General		
				Force Displacement Type	Elastic Perfectly Plastic	
Moment-Shear Strain Without Stren	gth Loss			Symmetric	Yes	
M - Memort through connection				Auto K0, My, Mu and Du	No	
M = Moment through connection. D = Shear strain in panel zone.			~	Panel Zone Dimensions	0.05	
entral charter partor cono.				Column Depth Factor	0.95	
				Beam Depth Factor	0.95	
M.				Include Doubler Plate	No	
··· A			~	Stiffness	C25000	
Mu T	W U K0 Kf in parallel			Initial Stiffness, K0 (kip-ft)	625000	
				Elastic Stiffness Ratio, KF/K0	0	
		~	Positive Moments	10.11.0007		
			Positive Moment Strength, Mu (kip-ft)	1041.6667		
			~	Positive Shear Strains Positive Shear Deformation, Dx (rad)	0.05	
) } 	D				
Show Definition Plot	Show Data Plot	Check Data		olumn Depth Factor ne panel zone width, w, is equal to this factor	times the column depth.	

Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

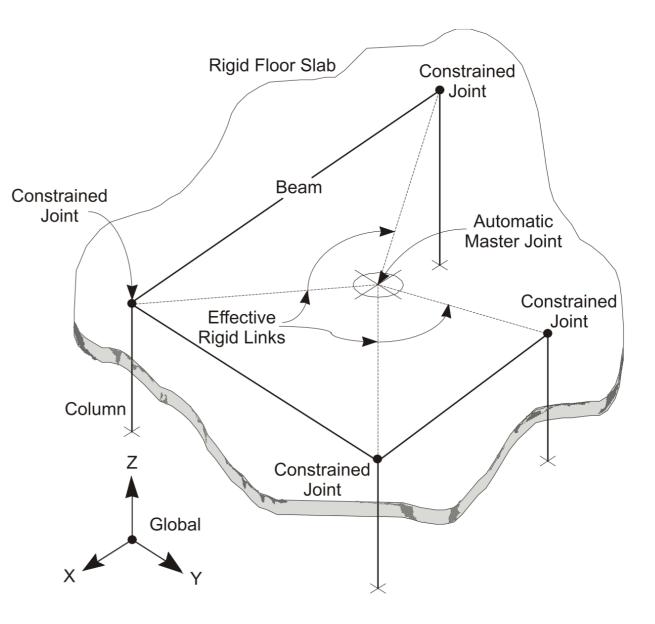

Joint Loads

💾 ETABS Ultimate 17.0.1 - ads

un ry way was a second way and a second s

Joint Results

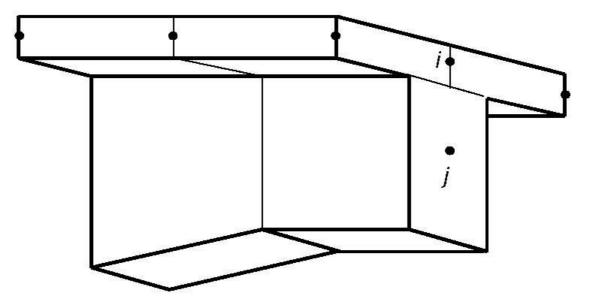
Using Constraints in Structural Model


- A constraint consists of a set of two or more constrained joints. The displacements of each pair of joints in the constraint are related by constraint equations. The types of behavior that can be enforced by constraints are:
 - **Rigid-body behavior,** in which the constrained joints translate and rotate together as if connected by rigid links. The types of rigid behavior that can be modeled are:
 - Rigid Body: fully rigid for all displacements
 - Rigid Diaphragm: rigid for membrane behavior in a plane
 - Rigid Plate: rigid for plate bending in a plane
 - Rigid Rod: rigid for extension along an axis
 - Rigid Beam: rigid for beam bending on an axis
 - Equal-displacement behavior, in which the translations and rotations are equal at the constrained joints
 - Symmetry and anti-symmetry conditions

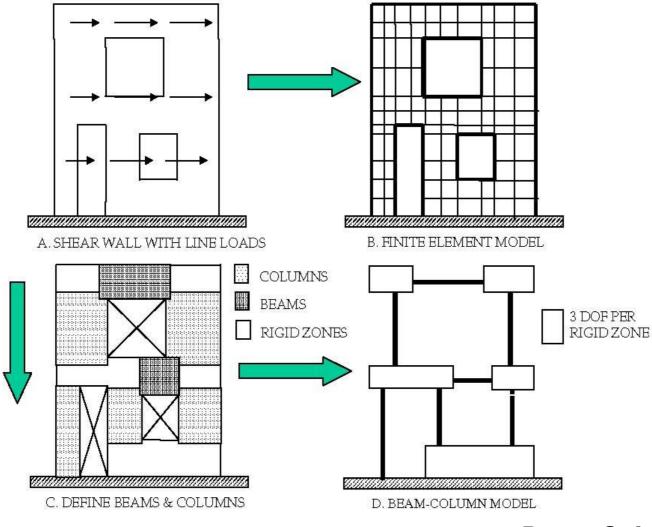
Diaphragm Constraint

- A Diaphragm Constraint causes all of its constrained joints to move together as a planar diaphragm that is rigid against membrane deformation. Effectively, all constrained joints are connected to each other by links that are rigid in the plane, but do not affect out-of-plane (plate) deformation.
- This Constraint can be used to:
 - Model concrete floors (or concrete-filled decks) in building structures, which typically have very high in-plane stiffness
 - Model diaphragms in bridge superstructures
- The use of the Diaphragm Constraint for building structures eliminates the numerical accuracy problems created when the large in-plane stiffness of a floor diaphragm is modeled with membrane elements. It is also very useful in the lateral (horizontal) dynamic analysis of buildings, as it results in a significant reduction in the size of the **eigenvalue problem** to be solved.

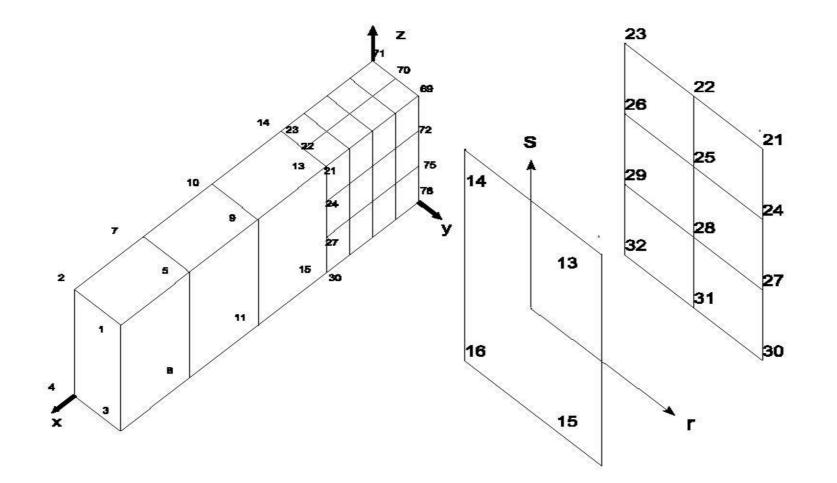
Diaphragm Constraint


All constrained (slave) nodes are connected with an automatically created master node by rigid links.

Rigid and Semi-Rigid Floor Models


- Rigid diaphragm
 - a) Each floor plate is assumed to translate in plan and rotate about a vertical axis as a rigid body.
 - b) There will be no in-plane deformations in the floor plate.
 - c) The solution will **not** produce any information on the **diaphragm shear stresses** or recover any axial forces in horizontal members that lie in the plane of the floors.
 - d) Automated lateral (seismic and wind) loads will act at master joint where the mass of whole diaphragm is lumped.
- Semi-rigid (flexible) diaphragm
 - a) There will be in-plane deformations in the floor plate.
 - b) The solution will produce diaphragm shear stresses or recover any axial forces in horizontal members that lie in the plane of the floors.
 - c) Automated lateral (seismic and wind) loads will distribute over at all joints of floor and the mass of diaphragm is also distributed to all nodes.
- Under the influence of lateral loads, significant shear stresses can be generated in the floor systems, and thus it may be sometimes important that the floor plates be modeled as semi-rigid diaphragms.

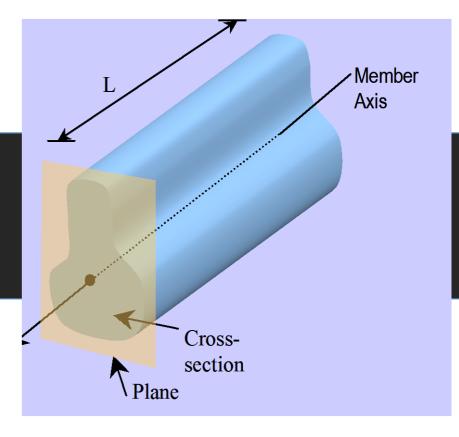
Use of Constraints in Beam-shell Analysis


Connection of Beam to Slab by Constraints

Use of Constraints in Shear Wall Analysis

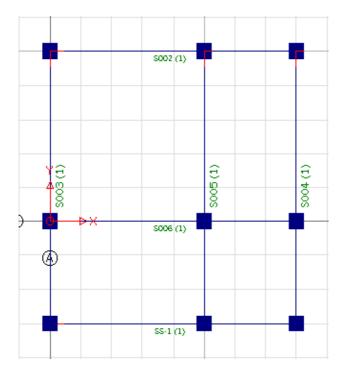
Beam-Column Model of Shear Wall

Use of Constraints for Mesh Transitions

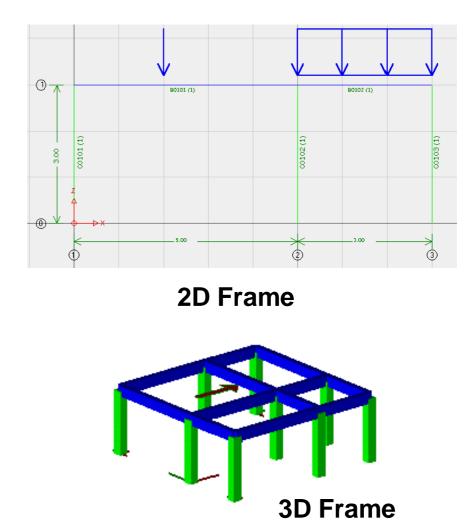


Use of Constraints to Merge Different Finite Element Meshes

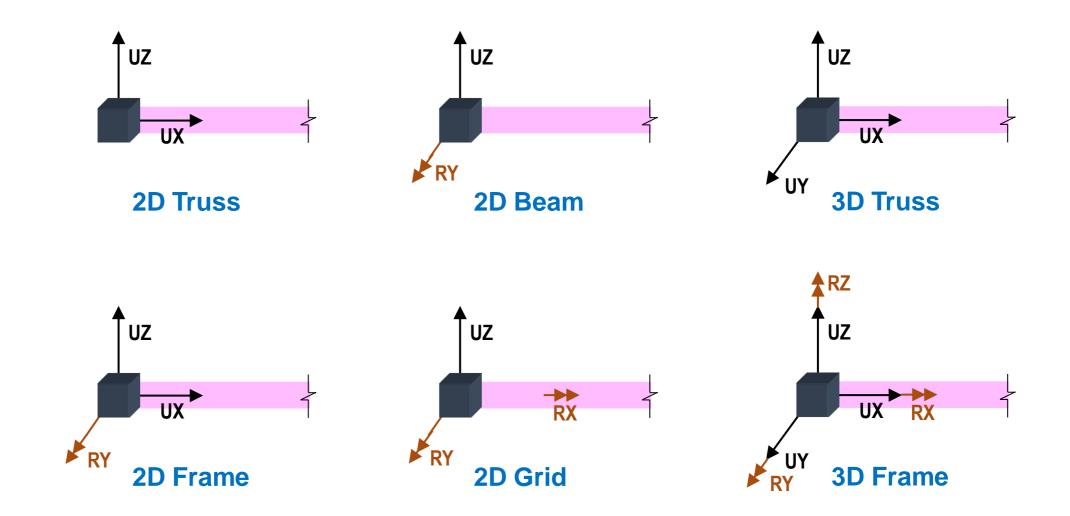
Constraint Outputs

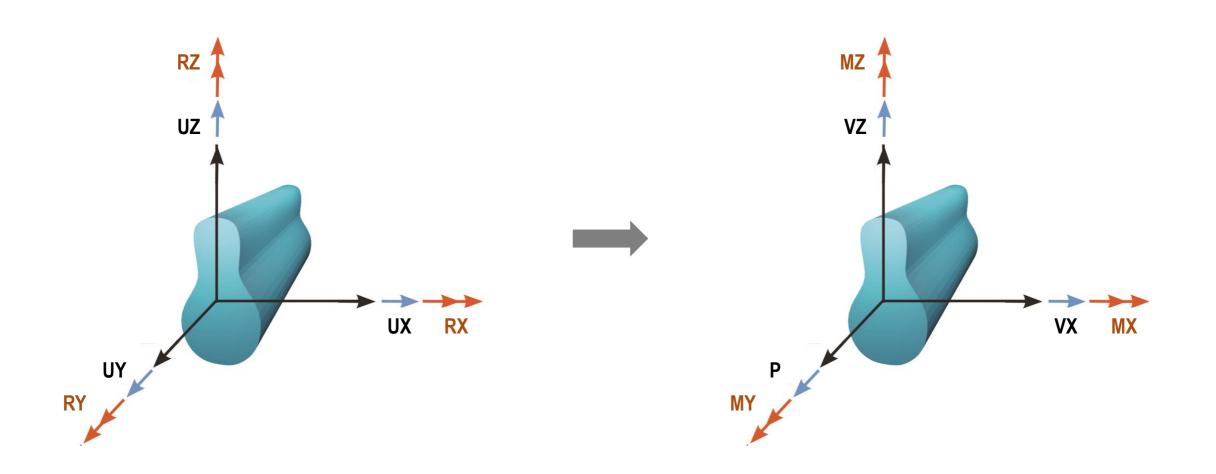

- For each Body, Diaphragm, Plate, Rod, and Beam Constraint having more than two constrained joints, the following information about the Constraint and its master joint is printed in the output file:
 - The translational and rotational local coordinate systems for the master joint
 - The total mass and mass moments of inertia for the Constraint that have been applied to the master joint
 - The center of mass for each of the three translational masses
- The degrees of freedom are indicated as U1, U2, U3, R1, R2, and R3. These are referred to the local coordinate systems of the master joint.

One Dimensional Frame Elements

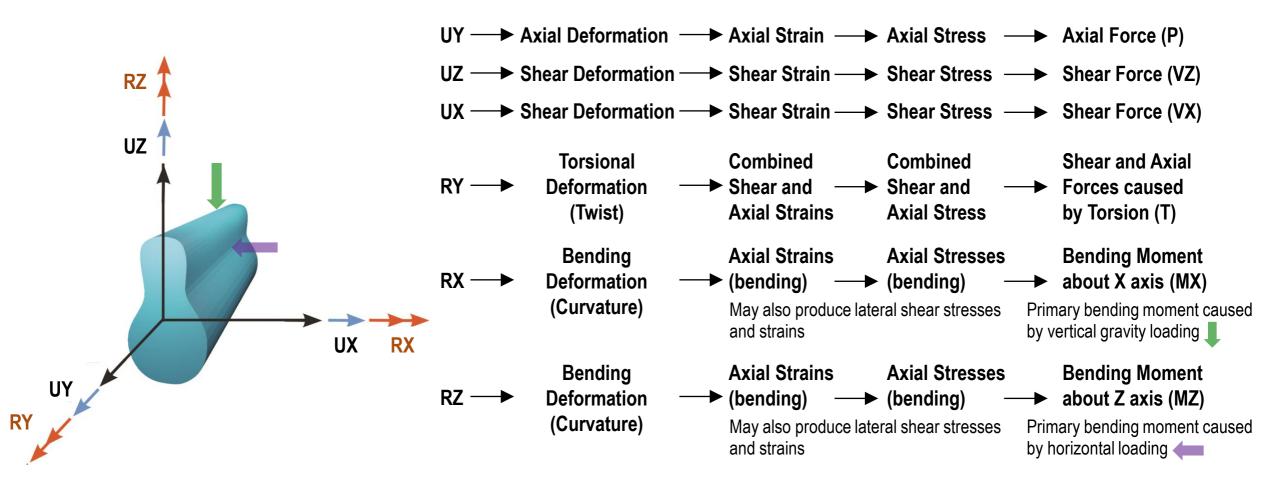


Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

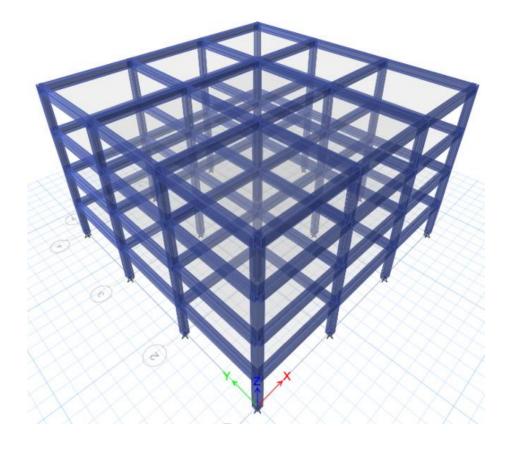

Usage of 1D Frame Elements



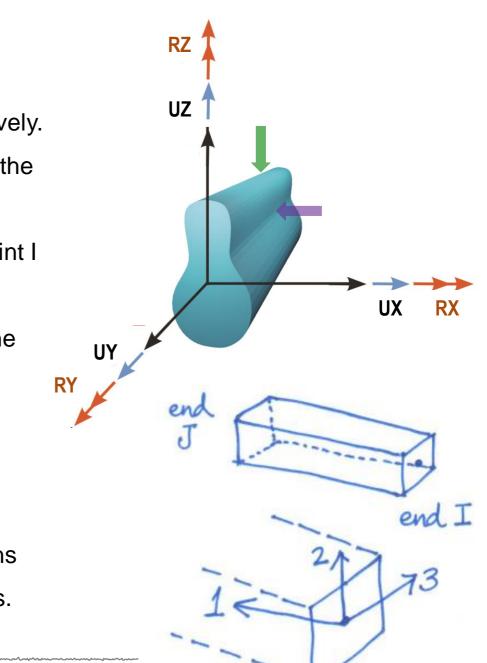
2D Grid

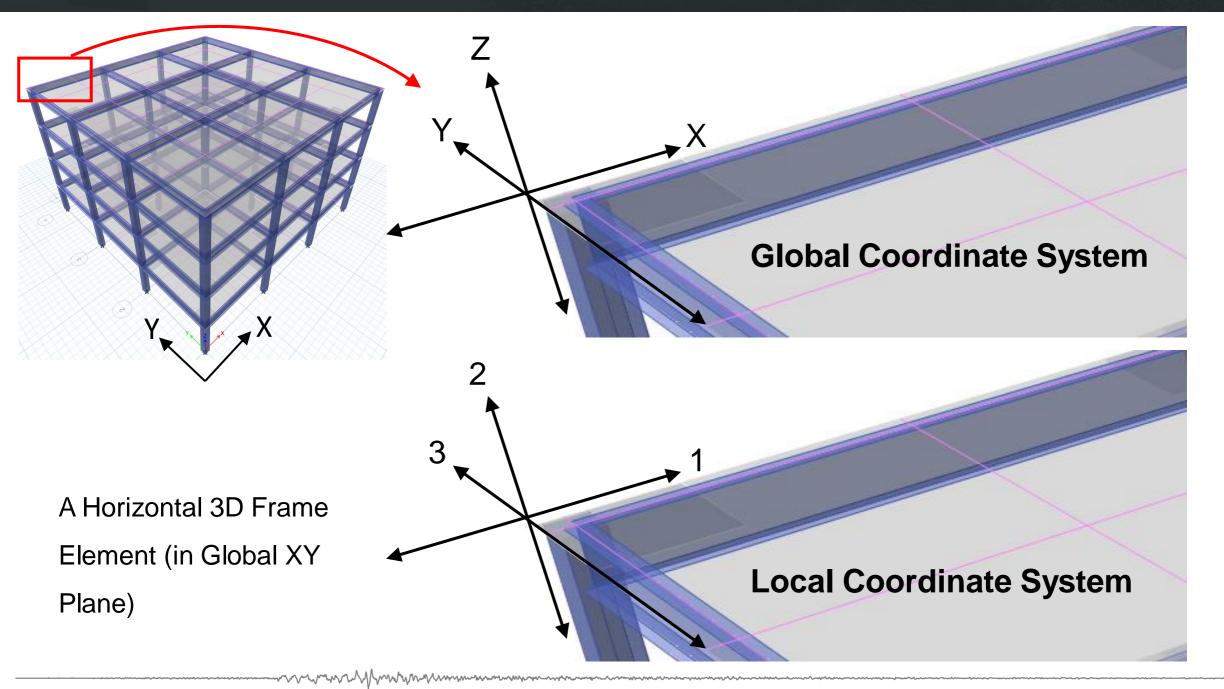

DOF for 1D Elements

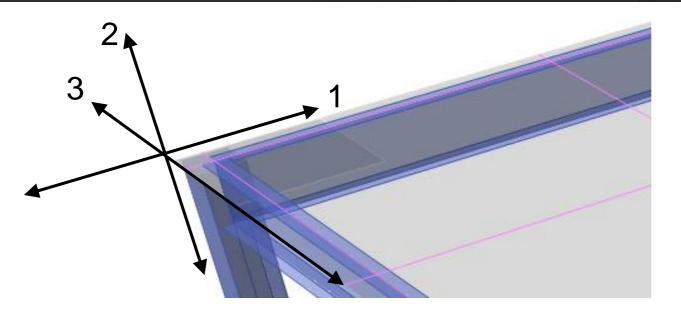
CE – 805: Advanced Concrete Design – Semester: Fall 2018 (Fawad A. Najam)


DOFs and Corresponding Deformations (and Actions)

CE – 805: Advanced Concrete Design – Semester: Fall 2018 (Fawad A. Najam)


One-dimensional Elements in SAP2000/ETABS


- Simple Frame Elements for
 - Beam, Column
 - Truss, Bracing, etc.
- Non-Linear Link Element for
 - Hook, Gap, Damper
 - Base Isolators
 - Friction
- Plastic Hinge Element


Frame Local Coordinate System in SAP/ETABS

- The two ends of the element are denoted end I and end J, respectively.
- The local axis 1 is always the longitudinal axis of the element, the positive direction being directed from End I to End J. This axis is always located at the centroid of the cross section, and connects joint I to joint j.
- The default orientation of the local 2 and 3 axes is determined by the relationship between the local 1 axis and the global Z axis.
- The local 2 axis is taken to have an up ward (+Z) sense unless the element is vertical, in which case the local 2 axis is taken to be horizontal along the global +X direction.
- The local 3 axis is horizontal, i.e., it lies in the X-Y plane. This means that the local 2 axis points vertically up ward for horizontal elements.

 $U1 \rightarrow P$ $U2 \rightarrow V2$ $U3 \rightarrow V3$ $R1 \rightarrow T$ $R2 \rightarrow M2$ $R3 \rightarrow M3$

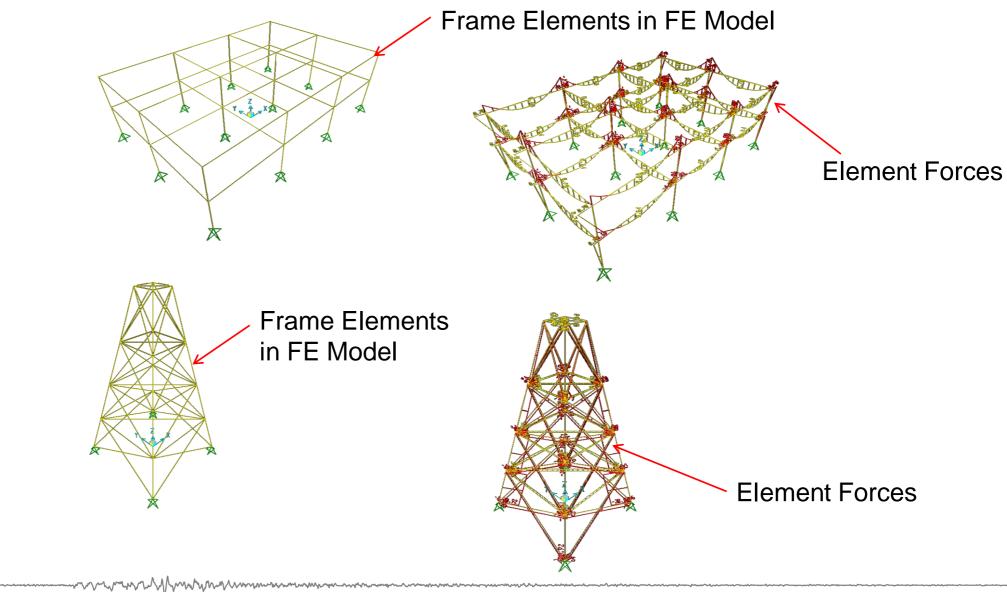
M3	\rightarrow A beam subjected to pure bending moment caused by gravity load
P, M3	ightarrow A beam subjected to axial load and bending caused by gravity load
V2	\rightarrow A beam subjected to pure shear force caused by gravity load
P, V2, M3	ightarrow A beam subjected to axial load, shear and bending caused by gravity load
Т	\rightarrow A beam subjected to pure torsion
M3, V2, P, T	→ A beam subjected to bending moment and shear caused by gravity load as well as axial load and torsion


1	P → A (perfect) concentrically loaded column
3	P, M3 A column under uniaxial bending. A column subjected to axial load and bending moment about axis 3. This bending moment can be transferred to this column from beam connecting in axis 2 direction.
	 P, M2 → A column under uniaxial bending. A column subjected to axial load and bending moment about axis 2. This bending moment can be transferred to this column from beam connecting in axis 3 direction.
U1 → P	 → A column under biaxial bending. A column subjected to axial load and two bending moments (i.e. both about axis 2 and axis 3). These bending moment can be transferred to this column from beams
	connecting in axis 2 and axis 3 directions.
$U2 \rightarrow V2$	The shear in beam along axis 2 direction (due to gravity load) will be transferred to this column as axial force
$U3 \rightarrow V3$	P. Any axial force in this beam (along axis 2) will be transferred to this column as shear V2. Similarly, the shear in beam clange axis 2 direction (due to gravity lead) will be transferred to this column as shear V2. Similarly, the shear
R1 → T	in beam along axis 3 direction (due to gravity load) will be transferred to this column as axial load P. Any axial force in this beam (along axis 3) will be transferred to this column as shear V3.
$R2 \rightarrow M2$	P, M3, V2, M2, V3 → A column subjected to biaxial bending as well as biaxial shear.
R3 → M3	P, M3, V2, M2, V3, T → The most unlucky column, subjected to everything, i.e. biaxial bending, biaxial shear as well as torsion.

Cross-section Stiffness and Cross-section Properties

- The action along each degree of freedom is related to the corresponding deformation by the member stiffness, which in turn, depends on the cross-section stiffness.
- So there is a particular cross-section property corresponding to member stiffness for each degree of freedom. Therefore, for the six degrees of freedom defined earlier, the related cross-section properties are:

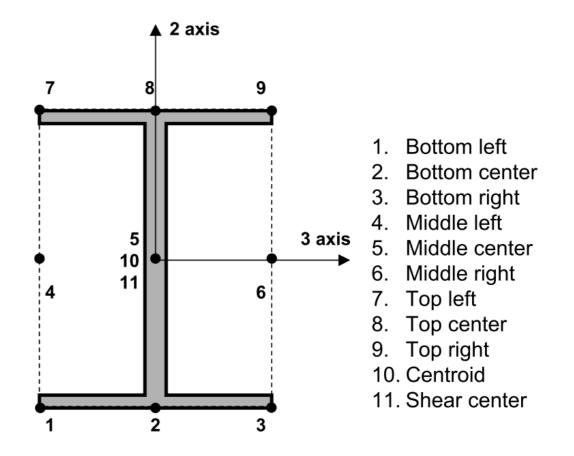
www.www.www.www.www.www.


- $UY \Rightarrow$ Cross-section area, A
- $UX \Rightarrow$ Shear Area along x, SA_X
- $UZ \Rightarrow$ Shear Area along y, SA_Z
- $RY \Rightarrow$ Torsional Constant, J
- $RX \Rightarrow$ Moment of Inertia, I_X
- $RZ \Rightarrow$ Moment of Inertia, I_Z

Section Properties

- A Frame Section is a set of material and geometric properties that describe the cross-section of one or more Frame elements.
- Sections are defined independently of the Frame elements, and are assigned to the elements.
- Section properties are of two basic types:
 - Prismatic all properties are constant along the full element length
 - Non-prismatic the properties may vary along the element length

The Frame Elements



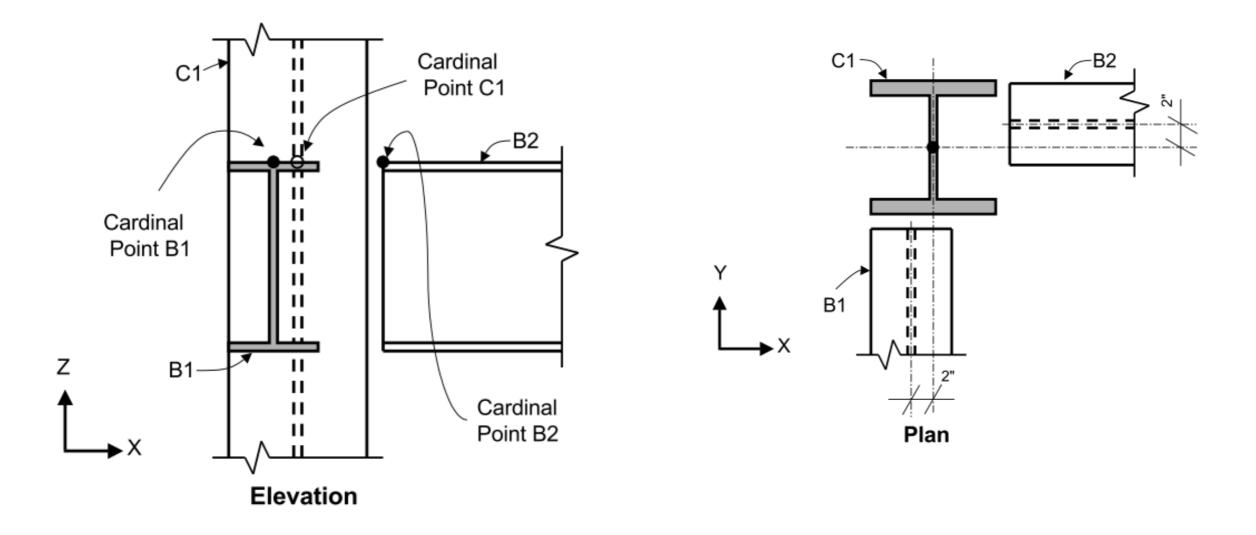
Frame Assignments

Assi	gn Analyze Display De	esign O	ptions Tools Help
*	Joint	+ 3	69 🛧 🐳 🔛 🗹 🗗 • 🗖 • 🗖 🤟 🕌
1	Frame	• 1/4	Section Property
Ď	Shell	• 🗶	Property Modifiers
×	Link	•	Releases/Partial Fixity
~*	Tendon	۲ ([*]	End Length Offsets
٠.	Joint Loads	• 1•	Insertion Point
in.	Frame Loads	* 💉	Local Axes
₩ **	Shell Loads Tendon Loads	. %	Output Stations
-			Tension/Compression Limits
/.	Assign Objects to Group	11+	Hinges
×_	Clear Display of Assigns	*	Line Springs
1	Copy Assigns	•%	Additional Mass
ïĽ	Paste Assigns	_ 🔊	Pier Label
		× 🔊	Spandrel Label
		<12	Frame Auto Mesh Options
			Frame Floor Meshing Options
		1	Moment Frame Beam Connection Type
		00	Column Splice Overwrite
		× 7	Nonprismatic Property Parameters
		< K.	Material Overwrite
			Column/Brace Rebar Ratio for Creep Analysis

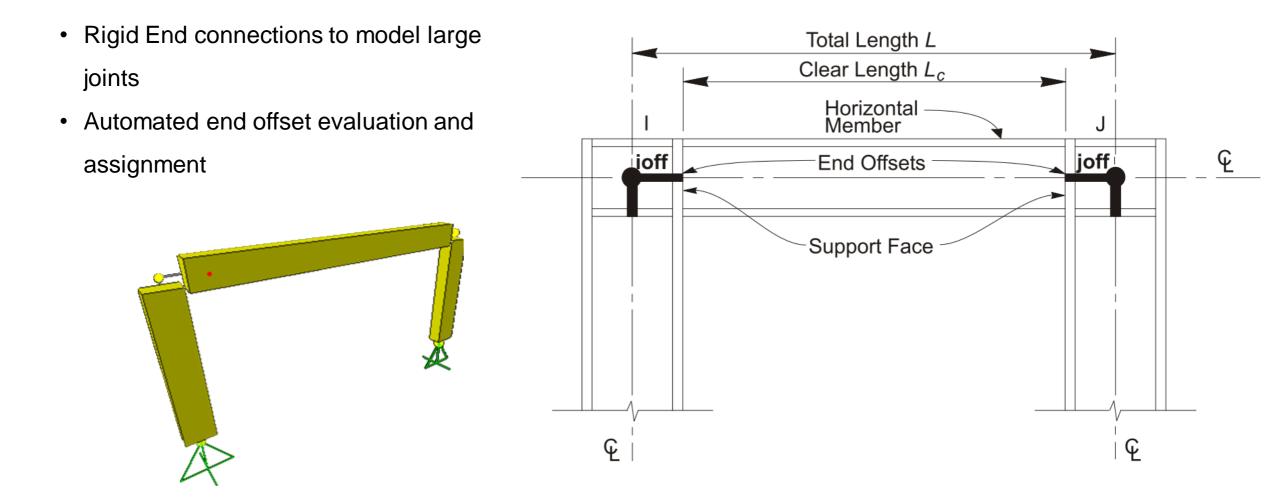
Insertion Points

- The local 1 axis of the element runs along the neutral axis of the section, i.e., at the centroid of the section. By default this connects to the joints I and j at the ends of the element.
- However, it is often convenient to specify an other location on the section, such as the top of a beam or an outside corner of a column, to connect to the joints.
- There is a set of pre-defined locations within the section, called cardinal points, that can be used for this purpose.
- The available choices are shown in Figure. The default location is point 10, the centroid.

Note: For doubly symmetric members such as this one, cardinal points 5, 10, and 11 are the same.

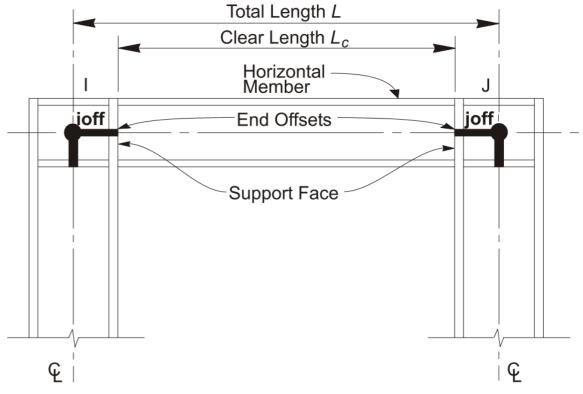

Insertion Points

- You can further offset the cardinal point from the joint by specifying joint offsets.
- The joint offsets together with the cardinal point make up the insertion point assignment. The total offset from the joint to the centroid is given as the sum of the joint offset plus the distance from the cardinal point to the centroid.
- This feature is useful, as an example, for modeling beams and columns when the beams do not frame into the center of the column.


Frame Assi	gnment - Insertio	n Point	2
Cardina	al Point		
	10 (Centroid)	~	
	Mirror about Lo	ocal 2	
	Mirror about Lo	ocal 3	
Frame	Joint Offsets from C	ardinal Point	
Coo	ordinate System L	.ocal v]
	End-I	End	
1	0	0	in
2	0	0	in
3	0	0	in
	from centroid for no		
	from centroid for no		

"WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

Insertion Points and Joint Offsets



Rigid End Offsets

Rigid-End Factor

- An analysis based upon the centerline-to-centerline (jointto-joint) geometry of Frame elements may overestimate deflections in some structures. This is due to the stiffening effect caused by overlapping cross sections at a connection. It is more likely to be significant in concrete than in steel structures.
- You may specify a rigid-end factor for each element using parameter rigid, which gives the fraction of each end off set that is assumed to be rigid for bending and shear deformation.
- The length rigid zone factor × ioff, starting from joint I, is assumed to be rigid. Similarly, the length rigid zone factor
 × joff is rigid at joint j.

The flexible length of the element is = **Total** Length – rigid zone factor (ioff + joff)

Rigid End Factor

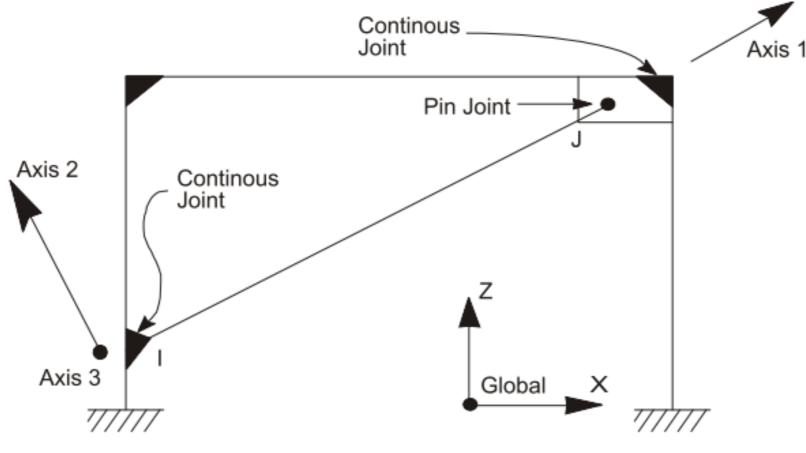
- The default value for rigid is zero. The maximum value of unity would indicate that the end offsets are fully rigid.
- You must use engineering judgment to select the appropriate value for this parameter. It will depend upon the geometry of the connection, and may be different for the different elements that frame into the connection.
- Typically the value for rigid would not exceed about 0.5.
- For concrete frames, 0.5 is recommended.
- The rigid-zone offsets never affect axial and torsional deformation. The full element length is assumed to be flexible for these deformations.

		_
End Offset Along Length	1	
Automatic from C	onnectivity	
 Define Lengths 		
End-I		in
End-J		in
Rigid-zone factor	0]
Frame Self Weight Optio	n	
Auto		
◯ Weight Based on	Full Length	
◯ Weight Based on	Clear Length	
ОК С	lose Apply	,

Frame Assignment - End Length Offsets

End Releases

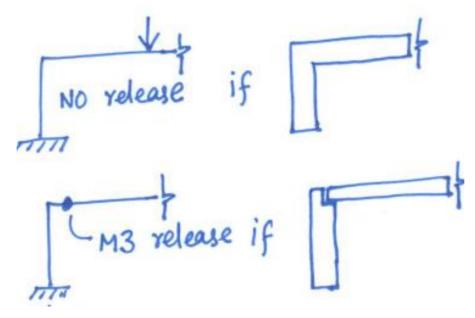
• Release: Removing the capacity of a frame end to resist any of P, M3, M2, V3, V2 and T.


• Any or all of the six actions can be released or partially fixed.

	Release		Frame Partial Fixity Springs		
	Start	End	Start	End	
Axial Load					kip/in
Shear Force 2 (Major)					kip/in
Shear Force 3 (Minor)					kip/in
Torsion					kip-in/rad
Moment 22 (Minor)					kip-in/rad
Moment 33 (Major)					kip-in/rad
✓ No Releases					

For Example, a frame element with M3, M2 and T releases at both ends

A 3D Truss Element

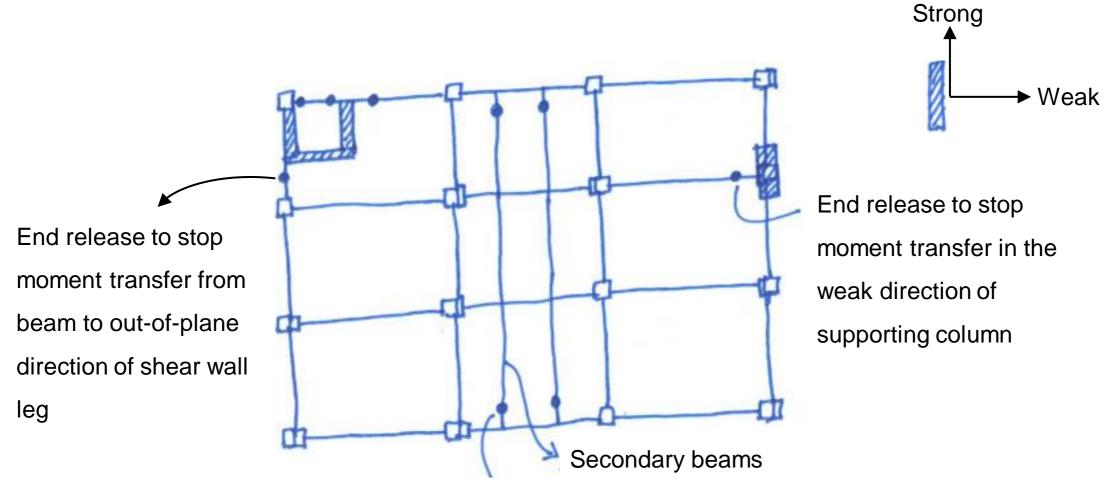

End Releases to model pin joints in diagonal elements (struts)

For diagonal element: R3 is released at end J

End Releases in frames used to model RC Beams

• For example, an M3 release in a beam will act like an internal hinge. The end will not transfer moments to connecting element.

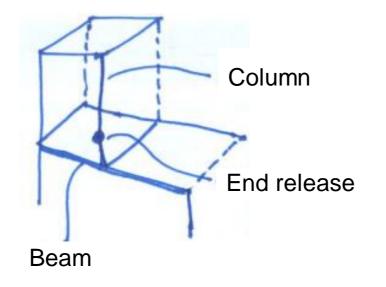
 In RC beams, apart from geometry, reinforcement also determines whether the end condition should be released or partially released.


Cases where we can use M3 release

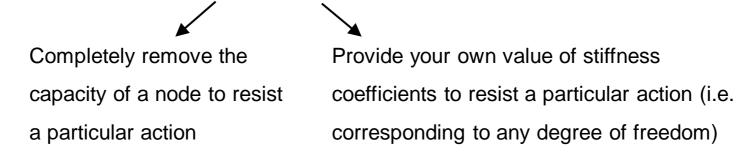
- a) Intentionally not transferring the end moment. For example, to reduce reinforcement → Model like no resistance to moment.
- b) Not enough development length available to rebars to behave like a rigid connection.

LVIV/WAAMMANNA CONTRACTION CONTRACTICO CON

- c) Column is so thin and unable to carry moments coming from beam.
- d) On secondary beams supported on main beams (girders). This will avoid the introduction of torsion → Just simply supported. If there is a series of supported beams, then one release at start and one at the end is enough.


Cases where we can use M3 release

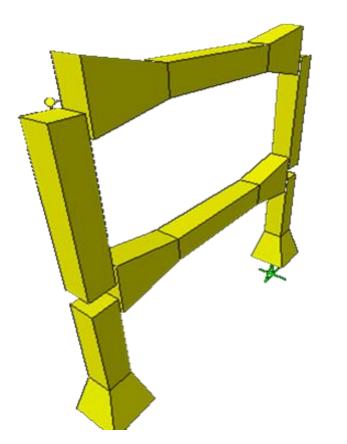
Releases at only the start and end in whole series


Cases where we can use M3 release

- e) On the nides of beams connecting to walls and columns on their weak axis (i.e. perpendicular to the longer dimension of leg or cross-section)
- f) Columns supported on beams (to avid torsion in supporting beams)

End Releases in Frames

• Select Frame \rightarrow Assign \rightarrow Frame \rightarrow Releases/Partial Fixity


- Wrongly applied releases → Structural Stability
- The following sets of releases are unstable, either alone or in combination, and are not permitted.

- Releasing U1 at both ends;
- Releasing U2 at both ends;
- Releasing U3 at both ends;

- Releasing R1 at both ends;
- Releasing R2 at both ends and U3 at either end;
- Releasing R3 at both ends and U2 at either end.

Non-prismatic Frame Elements

• Multiple non-prismatic segments over element length to model beams of variable sections

ape Section Segments	Modify/Sh Nonprismatic	iow Notes		3	
	Nonprismatic			-	
	Nonprismatic	``	~		
Section Segments			r		
Josteri orginenta				Show Current S	Segment Only
Elevation (1-2 Axes)	~	Show Aligned at T	his Cardinal Point	10 (Centroid)	~
Start Section	End Section	Length Type	Length, ft	EI33 Variation	EI22 Variation
oncBm	ConcBm	Proportional	1	Parabolic	Linear
y Current Row and Pa	aste Append			1	
	uncBm	Elevation (1-2 Axes) Start Section End Section IncBm ConcBm	Elevation (1-2 Axes) Show Aligned at T Start Section End Section Length Type IncBm ConcBm Proportional	Elevation (1-2 Axes) Show Aligned at This Cardinal Point Start Section End Section Length Type Length, ft IncBm ConcBm Proportional 1	Elevation (1-2 Axes) ✓ Show Aligned at This Cardinal Point 10 (Centroid) Start Section End Section Length Type Length, ft El33 Variation IncBm ConcBm Proportional 1 Parabolic

Nonlinear Properties of Frame Elements

- Two types of nonlinear properties are available for the Frame/Cable element:
 - 1) Tension/compression limits and
 - 2) Plastic hinges
- When nonlinear properties are present in the element, they only affect nonlinear analyses.
 Linear analyses starting from zero conditions (the un-stressed state) behave as if the nonlinear properties were not present.

Tension/Compression Limits

- You may specify a maximum tension and/or a maximum compression that a frame/cable element may take.
- In the most common case, you can define a no-compression cable or brace by specifying the compression limit to be zero.
- If you specify a tension limit, it must be zero or a positive value. If you specify a compression limit, it must be zero or a negative value. If you specify a tension and compression limit of zero, the element will carry no axial force.
- The tension/compression limit behavior is elastic. Any axial extension beyond the tension limit and axial shortening beyond the compression limit will occur with zero axial stiffness. These deformations are recovered elastically at zero stiffness.
- Bending, shear, and torsional behavior are not affected by the axial nonlinearity.

Tension/Compression Limits

Tension Limit 0	kip
Compression Limit 0	kip

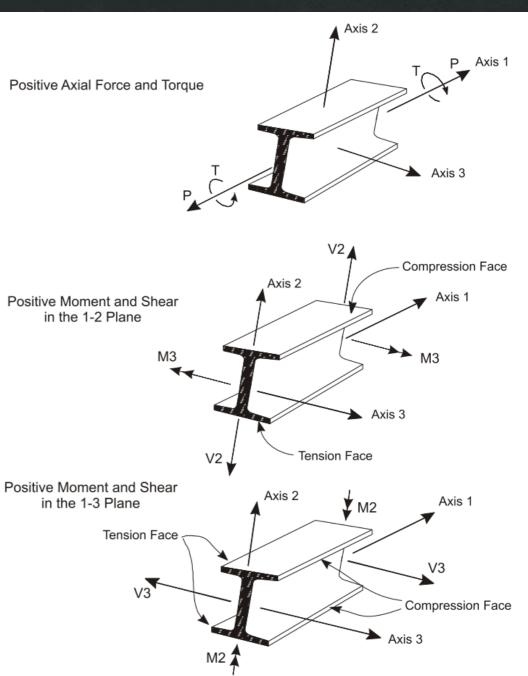
Frame Assignment - Tension/Compression Limits

 Diagonal struts (representing e.g. the masonry infills) can be modeled with Tension/Compression Limits

Plastic Hinges

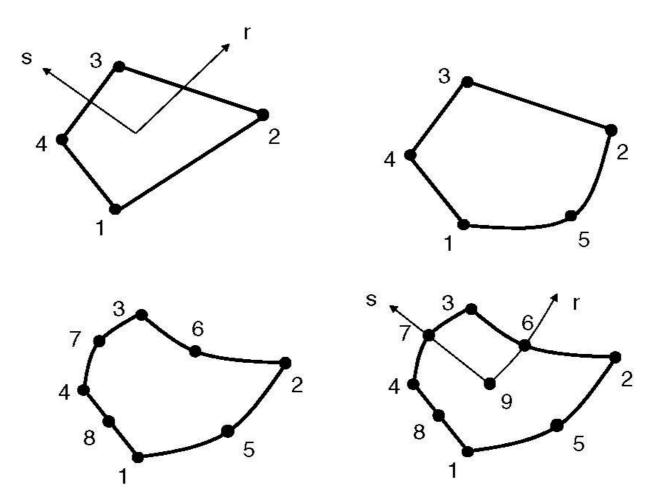
- You may insert plastic hinges at any number of locations along the clear length of the element.
- This is a topic of Lecture 6 (b); Nonlinear Modeling of Structures

Temperature Loads


- Temperature Load creates **thermal strain** in the Frame element. This strain is given by the product of the Material coefficient of thermal expansion and the temperature change of the element.
- All specified Temperature Loads represent a change in temperature from the unstressed state for a linear analysis, or from the previous temperature in a nonlinear analysis.

Frame Load Assignment - Temperature	
Load Pattern Name Dead	d ~
Object Temperature Uniform Temperature Change 0 F	Object Temperature Options O Add to Existing Temperature
End Joint Temperature Option Include Effects of Joint Temperatures	 Replace Existing Temperature Delete Existing Temperature
OK Close	Apply

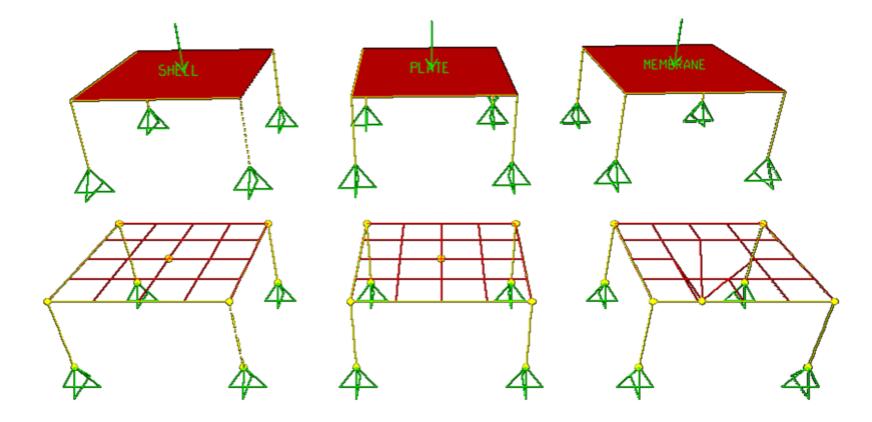
Internal Force Output


The Frame element internal forces are the forces and moments that result from integrating the stresses over an element crosssection. These internal forces are:

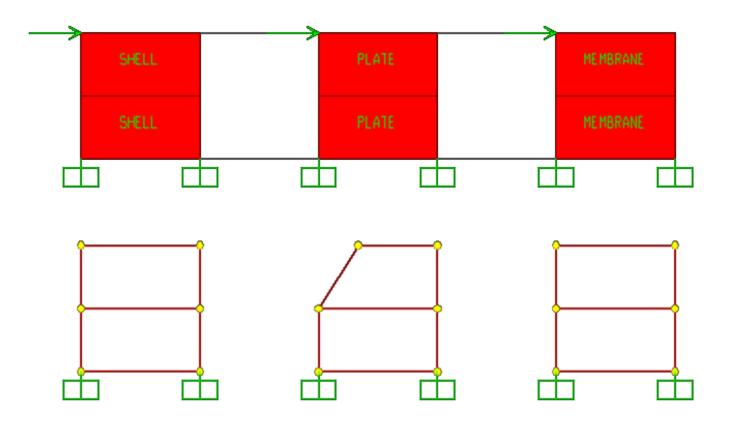
- P, the axial force
- V2, the shear force in the 1-2 plane
- V3, the shear force in the 1-3 plane
- T, the axial torque
- M2, the bending moment in the 1-3 plane (about the 2 axis)
- M3, the bending moment in the 1-2 plane (about the 3 axis)

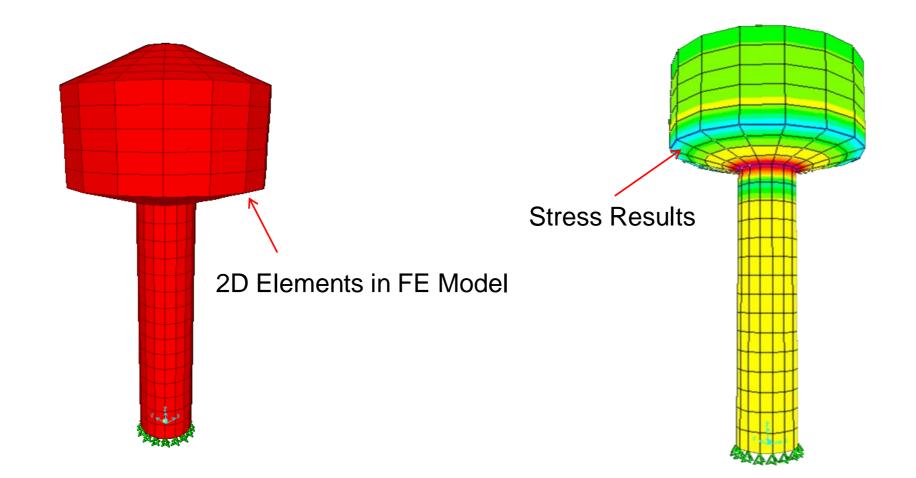

Two Dimensional Elements

Two-dimensional Elements

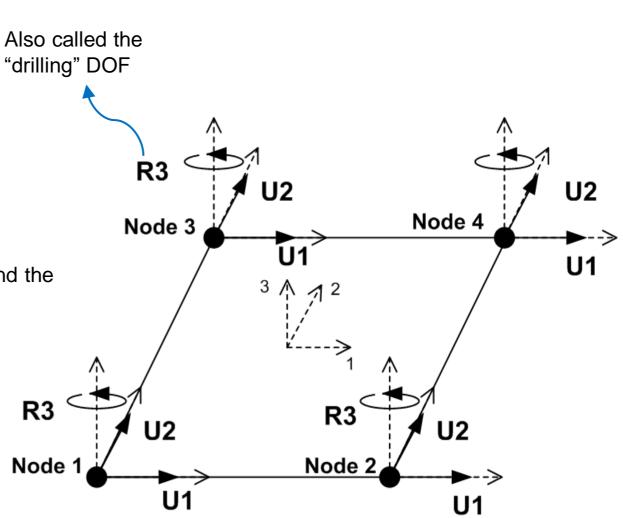


Four-to Nine-Node Two-Dimensional Isoparametric Elements

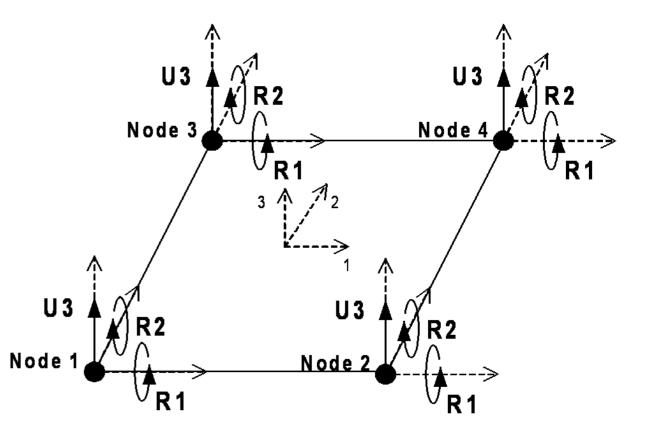

DOF for 2D Elements


DOF for 2D Elements

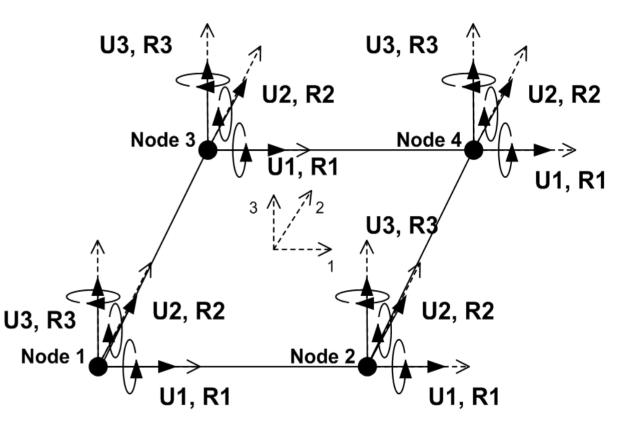
DOF for 2D Elements


2D Elements in FE Model

The Membrane Element


- General
 - Total DOF per Node = 3 (or 2)
 - Total Displacements per Node = 2
 - Total Rotations per Node = 1 (or 0)
 - Membranes are modeled for flat surfaces
 - Pure membrane behavior; only the in-plane forces and the normal (drilling) moment can be supported
- Application
 - For Modeling surface elements carrying in-plane loads
 - Walls, Deep Beams, Domes, Thin Shells
- Building Specific Application
 - For representing floor slabs for Lateral Load Analysis.

• Model Shear walls, Floor Diaphragm etc.


The Plate Element

- General
 - Total DOF per Node = 3
 - Total Displacements per Node = 1
 - Total Rotations per Node = 2
 - Plates are for flat surfaces
- Application
 - For modeling surface elements carrying out of plane loads
- Building Specific Application
 - For representing floor slabs for vertical load analysis
 - Model slabs, Footings, Mats

Shell Element

- General
 - Total DOF per Node = 6 (or 5)
 - Total Displacements per Node = 3
 - Total Rotations per Node = 3
 - Used for curved surfaces
- Application
 - For Modeling surface elements carrying general loads
 - Every surface type member
- Building Specific Application
 - May be used for modeling of general slabs and shear wall systems.

Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)

Area Objects in SAP2000/ETABS/CSI Bridge

- Finite Element Classification
 - Shell
 - Plate
 - Thick Plate
- Based on shear deformation

- Thin Plate
- Membrane
- Building Specific Classification
 - Plank One way
 - Slab One way or Two way
 - Deck One way

Shell Elements in SAP/ETABS

- The Shell element is a three- or four- node formulation that combines membrane and plate-bending behavior.
- A four-point numerical integration formulation is used for the Shell stiffness. Stresses and internal forces and moments, in the element local coordinate system, are evaluated at the 2-by-2 Gauss integration points and extrapolated to the joints of the element.
- Structures that can be modeled with this element include:
 - Floor systems
 - Wall systems
 - Bridge decks
 - Three-dimensional curved shells, such as tanks and domes
 - Detailed models of beams, columns, pipes, and other structural members

• Two distinct formulations are available: homogenous and layered.

Homogeneous Shell Element in SAP/ETABS

- The homogeneous shell combines independent membrane and plate behavior. These behaviors become coupled if the element is warped (non-planar.)
- The membrane behavior uses an iso-parametric formulation that includes translational in-plane stiffness components and a "drilling" rotational stiffness component in the direction normal to the plane of the element [Taylor and Simo (1985) and Ibrahimbegovic and Wilson (1991)].
- Plate-bending behavior includes two-way, out-of-plane, plate rotational stiffness components and a translational stiffness component in the direction normal to the plane of the element. You may choose a thin-plate (Kirchhoff) formulation that neglects transverse shearing deformation, or a thick-plate (Mindlin/Reissner) formulation which includes the effects of transverse shearing deformation.
- For each homogeneous Shell element in the structure, you can choose to model pure-membrane, pureplate, or full-shell behavior. It is generally recommended that you use the full shell behavior unless the entire structure is planar and is adequately restrained.

Thickness Formulation

- THICK: A thick-plate (Mindlin/Reissner) formulation is used which includes the effects of transverse shear deformation
- THIN: A thin-plate (Kirchhoff) formulation is used that neglects transverse shearing deformation
- Shearing deformations tend to be important when the thickness is greater than about **one-tenth to one-fifth of the span**. They can also be quite significant in the vicinity of bending-stress concentrations, such as near sudden changes in thickness or support conditions, and near holes or re-entrant corners.
- Even for thin-plate bending problems where shearing deformations are truly negligible, the thick-plate formulation tends to be more accurate, although somewhat stiffer, than the thin-plate formulation.
- The thickness formulation has no effect upon membrane behavior, only upon plate-bending behavior.

Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

Homogeneous Shell Element in SAP/ETABS

E.			3-d Pla ele 🧕 🕼
IJ	Section Properties	1	Frame Sections
[°] ₹	Spring Properties	۲	Tendon Sections
X	Diaphragms	a	Slab Sections
6	Pier Labels	(mark)	Deck Sections
¢گ 2	Spandrel Labels		Wall Sections
7.	Group Definitions	1	Reinforcing Bar Sizes
8	Section Cuts	ĸ×Ĕ	Link/Support Properties
*fx	Functions	11	Frame/Wall Nonlinear Hinges
~	Generalized Displacements	ţ∎,	Panel Zone

Define Draw Select Assign Analyze Display Design Options Tools

Help

The mass contributed by the Shell element is lumped at the element joints. No inertial effects are considered within the element itself.

Slab Property Data		×
Property Name	Slab1	
Slab Material	4000Psi ~	
Notional Size Data	Modify/Show Notional Size	
Modeling Type Modifiers (Currently Default)	Shell-Thin Shell-Thin Shell-Thick Membrane	
Display Color Property Notes	Layered Modify/Show	
Property Data		
Туре	Slab ~	
Thickness	8 in	
ОК	Cancel	

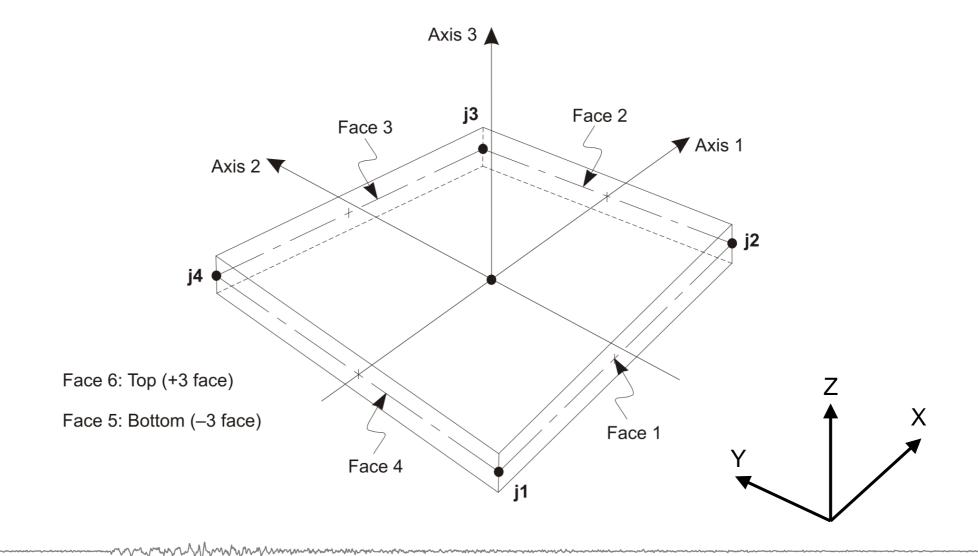
Layered Shell Element in SAP/ETABS

- The layered shell allows any number of layers to be defined in the thickness direction, each with an independent location, thickness, behavior, and material.
- Material behavior may be nonlinear.
- Membrane deformation within each layer uses a strain-projection method (Hughes, 2000.)
- Unlike for the homogeneous shell, the "drilling" degrees of freedom are not used, and they should not be loaded.
- For bending, a Mindlin/Reissner formulation is used which always includes transverse shear deformations.
- The layered Shell usually represents full-shell behavior, although you can control this on a layer-by-layer basis. Unless the layering is fully symmetrical in the thickness direction, membrane and plate behavior will be coupled.

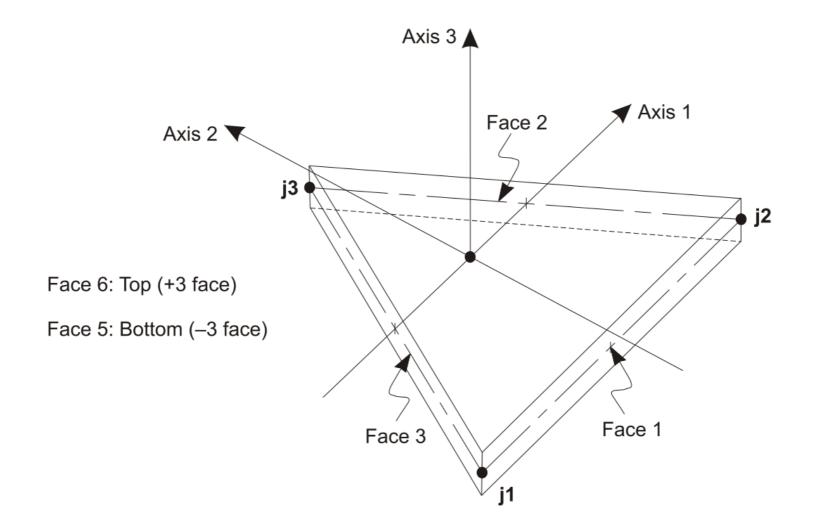
Layered Shell Element in SAP/ETABS

Layer Name	Distance	Thickness	Modeling Type	Number Integration Points	Material	Material Angle	Material Behavior	Material S11	Material S22	Material S12	A
Two important applications for the layered shell element are										Add Del	
Normhour onder wan modoling											
Modeli	ng of Inf	III Pane	S								
Iculated Layer Informati Number of Layers:				Cross Sect	ion Hig	ghlight Selected La	ayer		Order Layers		
Total Section Thick						Transpa	arency			Order Ascending I rder Descending	
Sum of Layer Over	aps: 0 in					Vertical	Scale		Quick Start		
Sum of Gaps Betwe	een Layer: 0 in				Min	Max				Parametric Quid	ck Start

Layered Shell Element in SAP/ETABS


eneral Data				Section Cut				
Concrete Material	4000P	si	~	Positive 3-Ax	is Side			
Rebar Material	A6150	ir60	~				Λ^3	
Concrete Thickness		8	in	_				
Number of Rebar Layers		2	~				→1 • •	
Plane Component Behavior		Out-of-Plane Comp	onent Behavior	Nanativa 2.4	wie Cide			
S11 Nonlinear Same as			Negative 3-Axis Side Plane Show 1-3 Section Cut Show 2-3 Section Cut					
S22 Nonlinear Linear				Show 1-3	Section Cut	C) Show 2-3 Section Cut	
S12 Nonlinear				Local 1-2 Plan	<u>e</u>			
_							Show Bars on Positive 3-Axis Face	
bar Size, Spacing and Clear Co		Rebar			^2		○ Show Bars on Negative 3-Axis Face	
Bars	Bar Size	Spacing, in	Clear Cover, in				Reset to Defaults	
Positive 3-Axis Bars - Dir. 1	#5	12	1.2			1		
Positive 3-Axis Bars - Dir. 2	#5	12	1.2				ОК	
Negative 3-Axis Bars - Dir. 1	#5	12	1.2			++-		
	#5	12	1.2				Cancel	

Local Coordinates for Shell Element

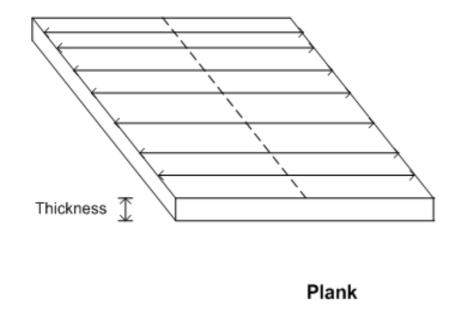

- Each Shell element has its own local coordinate system used to define Material properties, loads and output.
- The axes of this local system are denoted 1, 2 and 3. The first two axes lie in the plane of the element the third axis is normal to the plane of the Shell element.
- The default orientation of the local 1 and 2 axes is determined by the relationship between the local 3 axis and the global Z axis:
 - The local 3-2 plane is taken to be vertical, i.e., parallel to the Z axis
 - The local 2 axis is taken to have an upward (+Z) sense unless the element is horizontal, in which case the local 2 axis is taken along the global +Y direction

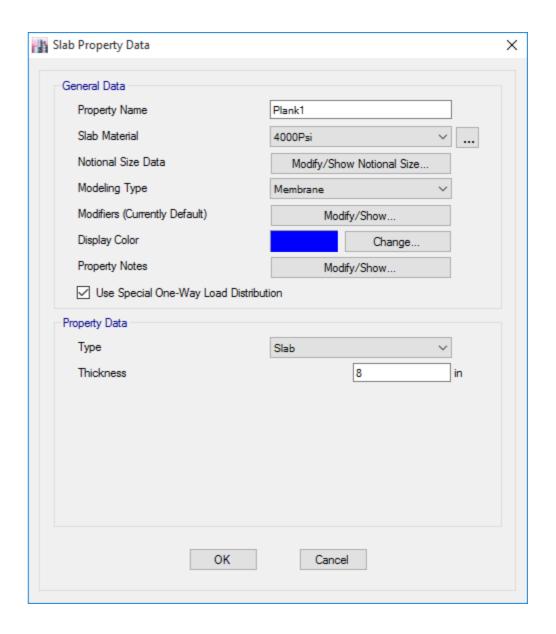
• The local 1 axis is horizontal, i.e., it lies in the X-Y plane

Shell Elements in SAP2000 (Four-node Quadrilateral Shell Element)

Shell Elements in SAP2000 (Three-node Triangular Shell Element)

Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)


Section Properties


- A Shell Section is a set of material and geometric properties describing the cross-section of one or more Shell elements.
- Sections are defined independently of the Shell elements, and are referenced during the definition of the elements.
- Section Type
 - Membrane (Supports only the in-plane forces and the normal (drilling) moment, Linear homogeneous material).
 - Plate (Supports only the bending moments and the transverse force, Thick- or thin-plate formulation, Linear homogeneous material).
 - Shell (Supports all moments and forces, Thick- or thin-plate formulation, Linear homogeneous material).

 Layered (Multiple layers, each with a different material, thickness, behavior, and location, Provides full-shell behavior un less all layers have only membrane or only plate behavior, With full-shell behavior, it supports all forces and moments except the "drilling" moment, Thick-plate formulation; may be non linear).

Area Object: Plank

- By default use one-way load transfer mechanism
- Generally used to model pre-cast slabs
- Can also be simple RC solid slab

Area Object: Deck

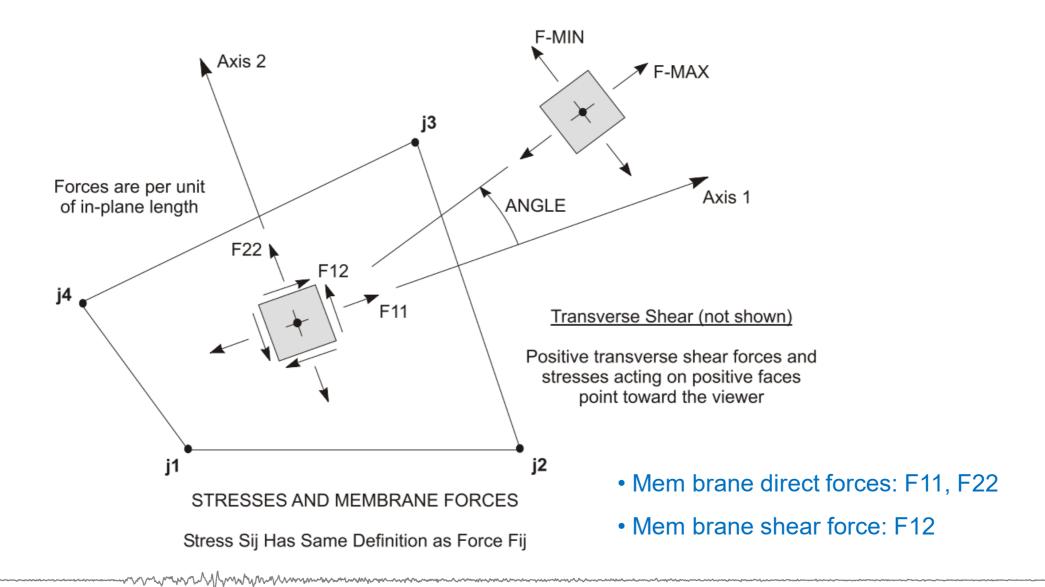
- Use one-way load transfer mechanism
- Metallic Composite Slabs
- Includes shear studs
- Generally used in association with composite beams
- Deck slabs may be
 - Filled Deck
 - Unfilled Deck
 - Solid Slab Deck

Deck Property Data		
General Data Property Name Type Slab Material Deck Material Modeling Type	Deck1 Filled	hs trilled Deck
Modeling Type Modifiers (Currently Default) Display Color Property Notes	Membrane V Modify/Show Change Modify/Show	
Property Data Slab Depth, tc Rib Depth, hr Rib Width Top, wrt Rib Width Bottom, wrb Rib Spacing, sr Deck Shear Thickness Deck Unit Weight Shear Stud Diameter Shear Stud Height, hs Shear Stud Tensile Strength, Fu	3.5 in 3 in 7 in 5 in 12 in 0.035 in 2.3 lb/ft² 0.75 in 6 in 65000 lb/in²	

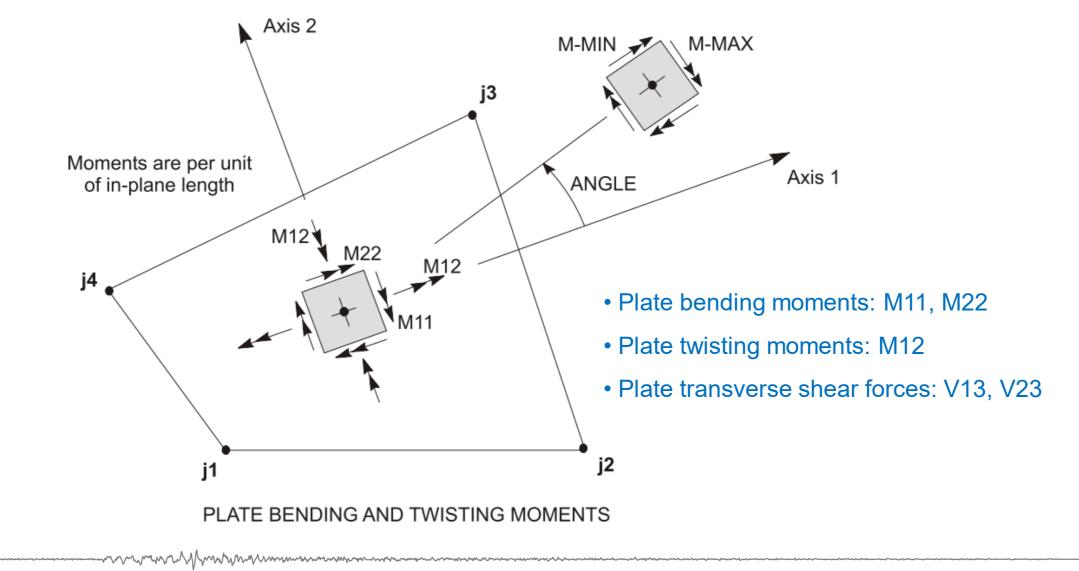
Shell Assignments

•	gn Analyze Display	Design			Tools		
•	Joint	•	9	60	î 🖤	NK 🔽	1
1	Frame	•	w				
	Shell	•					
×	Link	•					
~	Tendon	•					
.	Joint Loads	•					
in,	Frame Loads	•					
L.	Shell Loads	•		Uniform	Load	Sets	
~	Tendon Loads	•		Uniform	ı		
7.	Assign Objects to Group		1	Non-un	iform		
×	Clear Display of Assigns		Þ	Temper	ature		
	Copy Assigns		₽°,	Wind Pr	essure	Coefficier	it
ĥ	Paste Assigns	•					

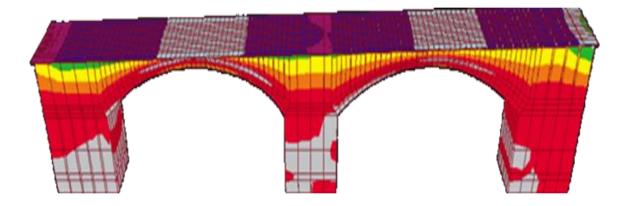
	Assi		olay Design	0	ptions Tools Help
monte	*	Joint	•	Э	60 🛧 🐺 🗹 🗊 • 🗊 • 🔲 •
nents	1	Frame	•	w	
		Shell	•	à	Slab Section
	*	Link	+		Deck Section
	~*	Tendon	•	1	Wall Section
	:	Joint Loads	•	Q	Openings
Design Options Tools Help	in.	Frame Loads	•		Stiffness Modifiers
)) 60 📥 🐳 🔛 🗹 🗗 - 🗊	ш.	Shell Loads	•	-	Thickness Overwrites
► w	**	Tendon Loads	•	-	Insertion Point
•	10	Assign Objects to Gr	roup		Diaphragms
	×	Clear Display of Assi	igns	<\$	Edge Releases
•		Copy Assigns		₩.	Local Axes
	Ē	Paste Assigns	+	i	Area Springs
► Berton Land Sate	_			2	Additional Mass
[] Uniform Load Sets				5	Pier Label
 Uniform 				ي م	Spandrel Label
Non-uniform				1	Wall Hinge
Temperature				Č.	Reinforcement for Wall Hinge
₩ Wind Pressure Coefficient					
			13	Ø	Floor Auto Mesh Options
•			ŦŦ		Wall Auto Mesh Options
			H	X	Auto Edge Constraint
			H	K	Material Overwrite
				1	Wall Rebar Ratio for Creep Analysis
	-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****	


Internal Force and Stress Output

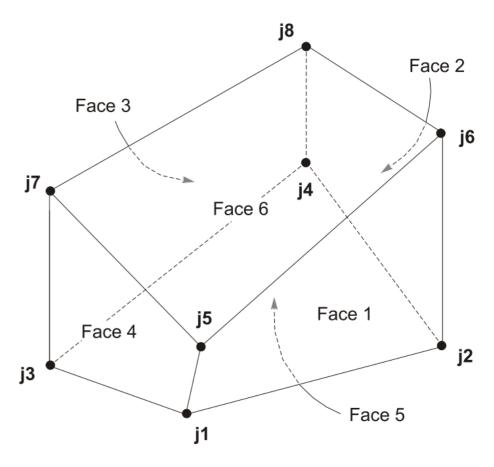
• The Shell element internal forces (also called stress resultants) are the forces and moments that result from integrating the stresses over the element thickness. For a homogeneous shell, these internal forces


are:

- Membrane direct forces: F11, F22
- Membrane shear force: F12
- Plate bending moments: M11, M22
- Plate twisting moments: M12
- Plate transverse shear forces: V13, V23
- It is very important to note that these stress resultants are forces and moments per unit of in-plane length. They are present at every point on the mid-surface of the element.


Internal Force and Stress Output

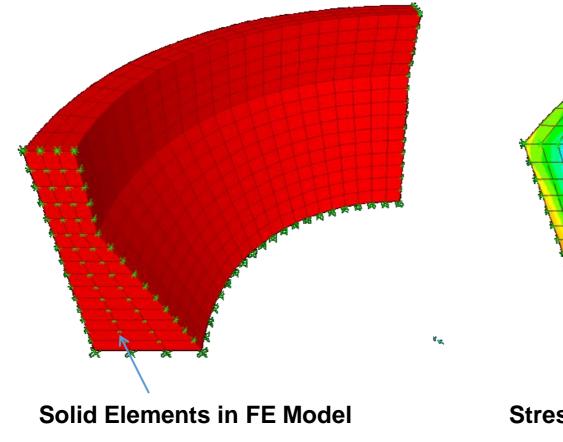
Internal Force and Stress Output

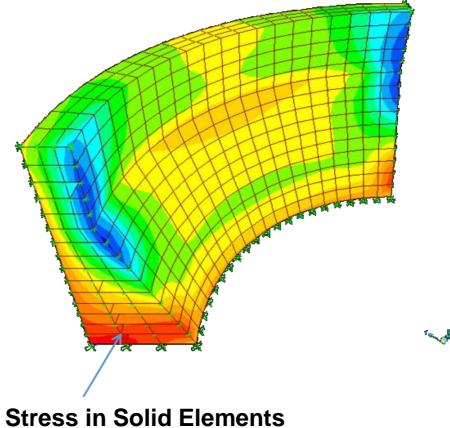


Three Dimensional Elements

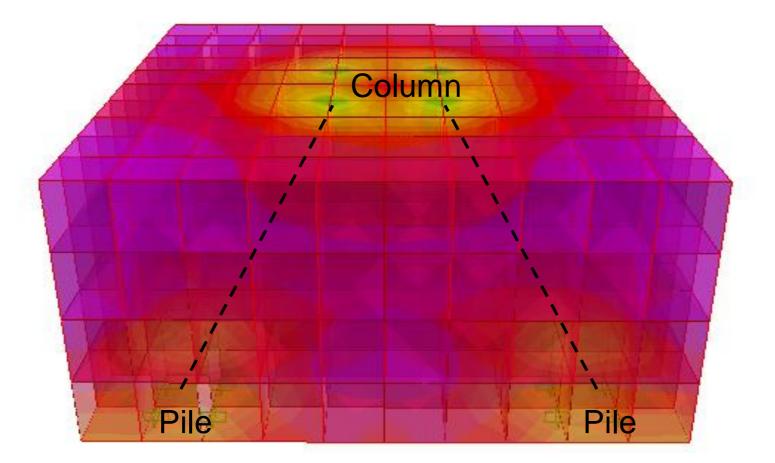
The Solid Element

- The Solid element is an **eight-node element** used to model threedimensional solid structures.
- Each solid has six quadrilateral faces with a joint at each corner. Nodes may be collapsed to form wedges, tetrahedra, and other irregular volumes. This is done by specifying the same joint number for two or more of the eight corner nodes, so long as the ordering of the nodes remains the same. Examples include:
 - Wedge (triangular bottom, triangular top): j1, j2, j3 = j4, j5, j6, j7 = j8
 - Tetrahedron (triangular bottom, point top): j1, j2, j3 = j4, j5 = j6 = j7 = j8
 - 7-node (rectangular bottom, triangular top): j1, j2, j3, j4, j5, j6, j7 = j8
 - Pyramid (rectangular bottom, point top): j1, j2, j3, j4, j5 = j6 = j7 = j8
- An 2 x 2 x 2 numerical integration scheme is used for the Solid.
 Stresses in the element local coordinate system are evaluated at the integration points and extrapolated to the joints of the element.

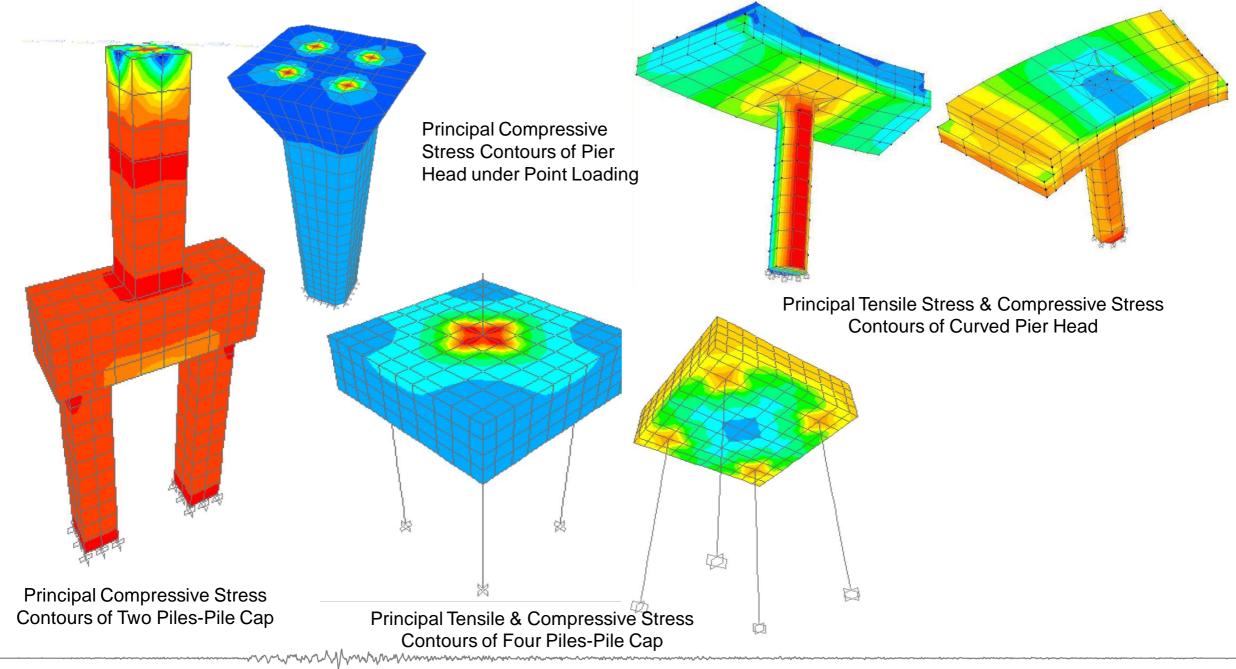

Degrees of Freedom and Local Coordinate System


- The Solid element activates the three translational degrees of freedom at each of its connected joints.
- Rotational degrees of freedom are **not** activated.
- This element contributes stiffness to all of these translational degrees of freedom.
- Each Solid element has its own element local coordinate system used to define Material properties, loads and output.
- The axes of this local system are denoted 1, 2 and 3.
- These axes always correspond with the global coordinate axes X, Y and Z, respectively, regardless of the orientation of the element.

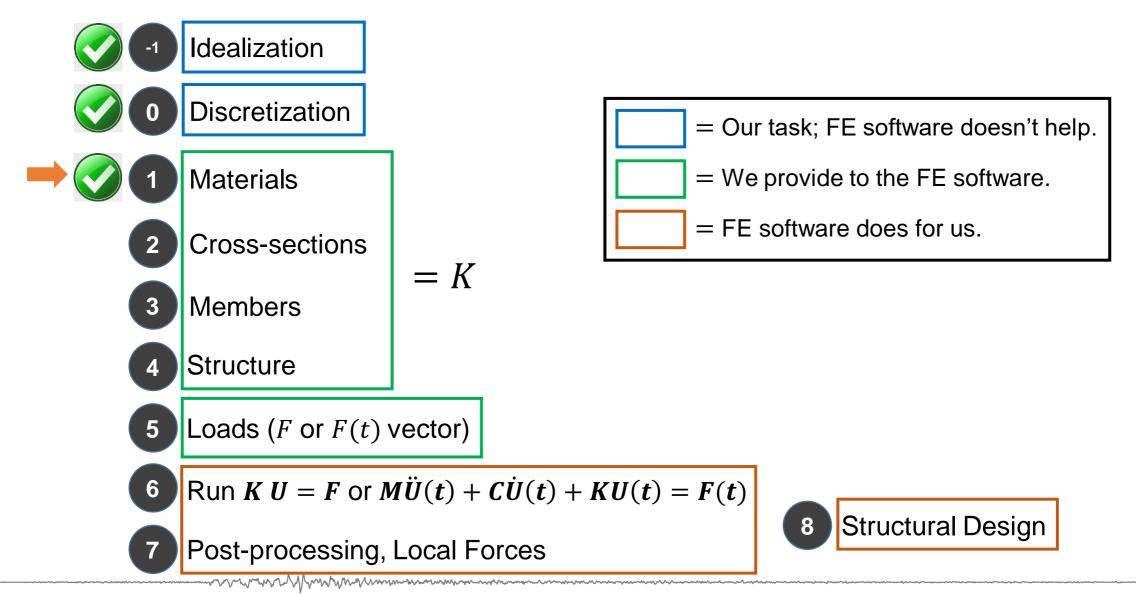
Material Properties


- The material properties for each Solid element are specified by reference to a previouslydefined Material.
- Fully anisotropic material properties are used.
- The material properties used by the Solid element are:
 - The moduli of elasticity, e1, e2, and e3
 - The shear moduli, g12, g13, and g23
 - All of the Poisson's ratios, u12, u13, u23, ..., u56
 - The coefficients of thermal expansion, a1, a2, a3, a12, a13, and a23
 - The mass density, m, used for computing element mass
 - The weight density, w, used for computing Self-Weight and Gravity Loads

Solid Elements in FE Model

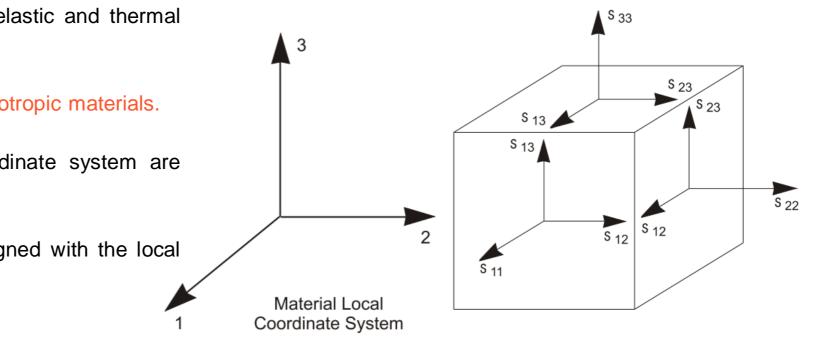


Solid Elements in FE Model



Stress in Pile-Cap (SVMax)

Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)


Finite Element Modeling, Analysis and Design Process

Modeling of Structural Materials

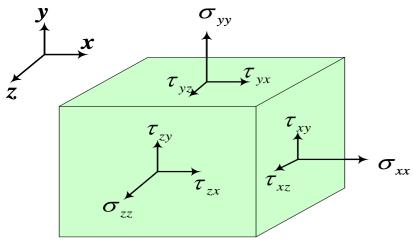
Stresses and Strains – General Notation

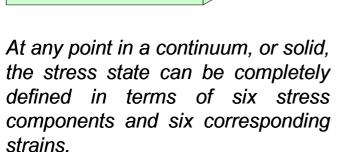
- Each material has its own material local coordinate system, which is used to define the elastic and thermal properties.
- Significant only for orthotropic and anisotropic materials.
- The axes of the material local coordinate system are denoted as 1, 2, and 3.
- The material coordinate system is aligned with the local coordinate system for each element.

Stress Components

Definition of Stress Components in the Material Local Coordinate System

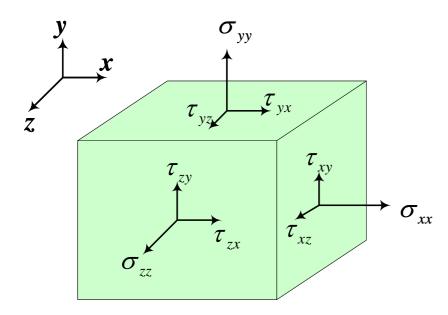
Stress and Strain – One Dimensional Case


• The Hook's law states that within the elastic limits, the stress is proportional to the strain


$$\sigma = E \varepsilon$$

- This is valid for only very limited cases
- In reality, the Modulus of Elasticity, E is NOT a constant
- There are many stress and strain components, and many properties.

A Bigger Picture of Stress-Strain Components


For a general 3D Isotropic Material

$$\begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{bmatrix} = \frac{E}{(1+v)(1-2v)} \begin{bmatrix} 1-v & v & v & 0 & 0 & 0 \\ v & 1-v & v & 0 & 0 & 0 \\ v & v & 1-v & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2v}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2v}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2v}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1-2v}{2} \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{bmatrix}$$

Stress and Strains Components

At any point in a continuum, or solid, the stress state can be completely defined in terms of six stress components and six corresponding strains.

- The Hook's law is a simplified form of Stress-Strain relationship.
- Ultimately, the six stress and strain components can be represented by 3 principal summations.

Directional Behaviors of Materials

Isotropic Materials

- The behavior of an isotropic material is independent of the direction of loading or the orientation of the material.
- Shearing behavior is uncoupled from ex-tensional behavior and is not affected by temperature change.

Orthotropic Materials

- The behavior of an orthotropic material can be different in each of the three local coordinate directions.
- Shearing behavior is un-coupled from extensional behavior and is not affected by temperature change.
 Anisotropic Materials
- The behavior of an anisotropic material can be different in each of the three local coordinate directions
- Shearing behavior can be fully coupled with extensional behavior and can be affected by temperature change.

Basic Properties

- For analysis
 - Modulus of elasticity, E
 - Poisons ratio, ν
 - Shear modulus, G
 - Thermal expansion coefficient, α
- For design
 - Yield stress, F_y
 - Failure stress, F_u , F_c , F_t etc.
 - Yield strain ε_y
 - Failure strain ε_u

Material Property Data			×
General Data			
Material Name	4000Psi		
Material Type	Concrete		
			~
Directional Symmetry Type	Isotropic		~
Material Display Color		Change	
Material Notes	Modi	fy/Show Notes	
Material Weight and Mass			
Specify Weight Density	🔿 Spe	ecify Mass Density	
Weight per Unit Volume		150	lb/ft³
Mass per Unit Volume		4.662	lb-s²/ft4
Mechanical Property Data			
Modulus of Elasticity, E		3604996.5	lb/in²
Poisson's Ratio, U		0.2	
Coefficient of Thermal Expansion, A		0.0000055	1/F
Shear Modulus, G		1502081.88	lb/in²
Design Property Data			
Modify/Show M	aterial Property	y Design Data	
Advanced Material Property Data			
Nonlinear Material Data		Material Damping	Properties
Time De	ependent Prop	erties	
			Isotropic
OK		Canad	
OK		Cancel	Material

Materi	al Name	4000Psi
Materi	al Type	Concrete, Orthotropic
lodulus (of Elasticity	
E1	β604996.5 lb∕ir	
E2	3604996.5 lb/ir	² Orthotropic
E3	3604996.5 lb/ir	Material
hear Mo	dulus	
G12	1502081.88 lb/ir	2
G13	1502081.88 lb/ir	2
G23	1502081.88 lb/ir	2
oefficier	nt of Thermal Expansion	
A1	0.0000055 1/F	
A2	0.0000055 1/F	
A3	0.0000055 1/F	
oisson's	Ratio	
U12	0.2	ОК
U13	0.2	Cancel
U23	0.2	

Material Modelling for Steel and Concrete

- Modulus of elasticity based on nominal strengths
- Unit weight of materials
- Unit mass of materials
- Poisson's ratios

Modulus of elasticity of concrete,

 $E_c = 57000\sqrt{f_c'}$ for $f_c' \le 6000$ psi $E_c = 40000\sqrt{f_c'} + 1 \times 10^6$ for $f_c' > 6000$ psi

Modulus of elasticity of steel,

$$E_s = 199,947 MPa$$

Weight per unit volume

- Reinforced concrete = 23.56 kN/m^3
- Steel = 76.97 kN/m^3

Poisson's ratio

- Reinforced concrete = 0.2
- Steel = 0.3

Other Specific properties

- Relaxation
- Fatigue
- Creep
- Shrinkage
- Confinement based properties

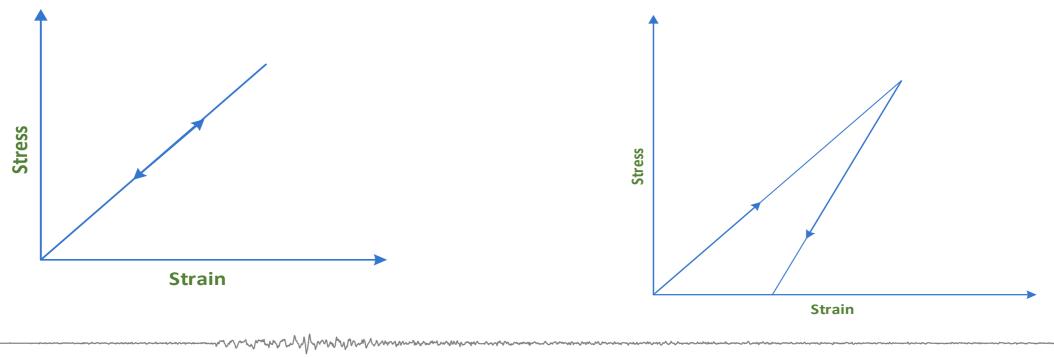
Dependence of Behavior

- Relationship between Stress and Strain depends on
 - Basic material composition
 - Initial conditions
 - State of strain
 - Direction of strain
 - History of strain

- Time since initial strain
- Temperature
- Cyclic strain

• Rate of strain change, velocity and acceleration

Linearity and Elasticity

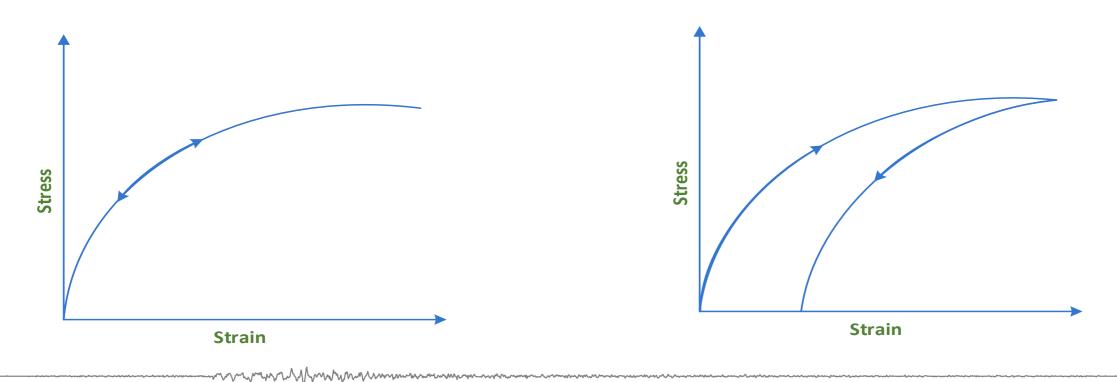

- Material behavior depends on level of strain
 - Linear
 - Non-linear
- Material behavior depends on loading history
 - Elastic
 - Plastic
 - Inelastic
 - Hysteretic

Linear Elastic Material

- A linear elastic material is one in which the strain is proportional to stress
- Both "loading" and "unloading" curves are same (straight lines).

Linear Inelastic Material

- A linear inelastic material is one in which the strain is proportional to stress
- "Loading" and "unloading" curves are not same (although straight lines).

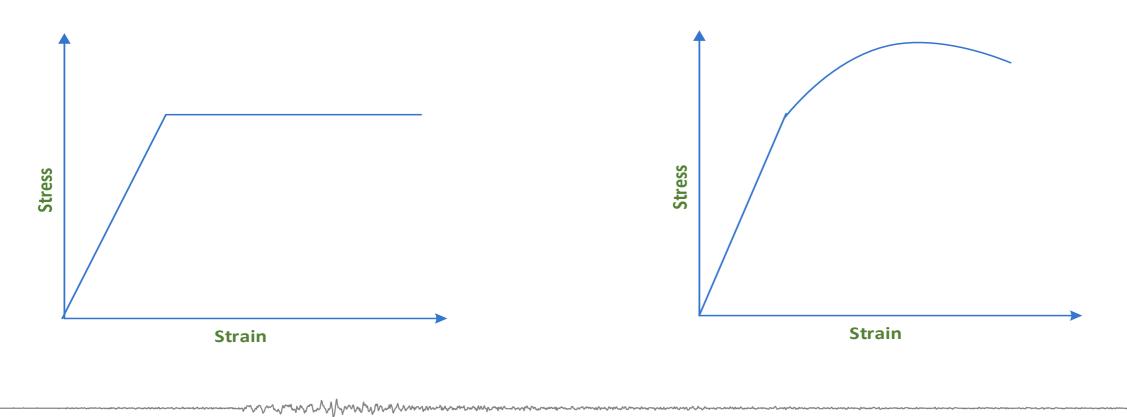


Nonlinear Elastic material

- For a nonlinear elastic material, strain is not proportional to stress as shown in figure.
- Both "loading" and "unloading" curves are same but are not straight lines.

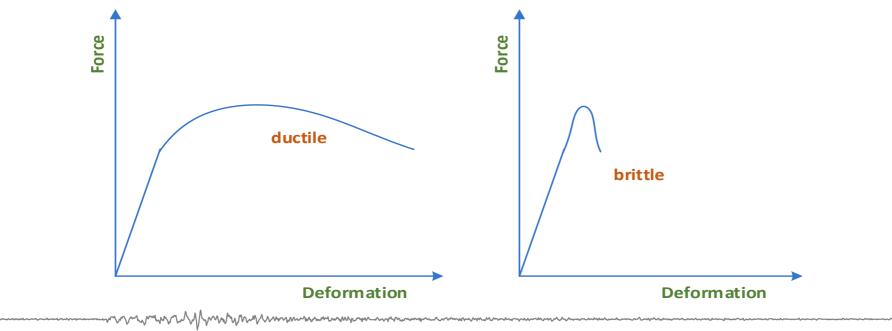
Nonlinear Inelastic Material

- For a nonlinear inelastic material, strain is not proportional to stress as shown in figure.
- "Loading" and "unloading" curves are not same in this case.



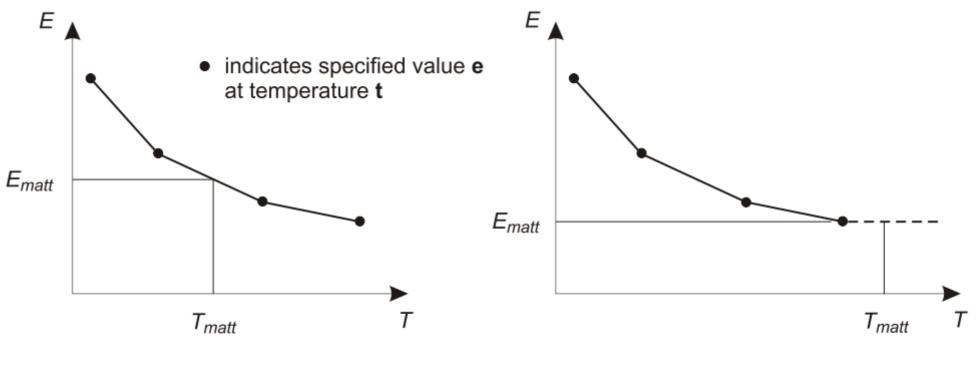
Elastic–Perfectly Plastic (Nonstrain Hardening)

• The behavior of an elastic-perfectly plastic (non-strain hardening) material


Elastic – Plastic Material

 The elastic plastic material exhibits a stress – strain behavior as depicted in the figure

Ductile and Brittle Materials


- Ductile materials:
 - able to deform significantly into the inelastic range
- Brittle materials:
 - · fail suddenly by cracking or splintering
 - much weaker in tension than in compression

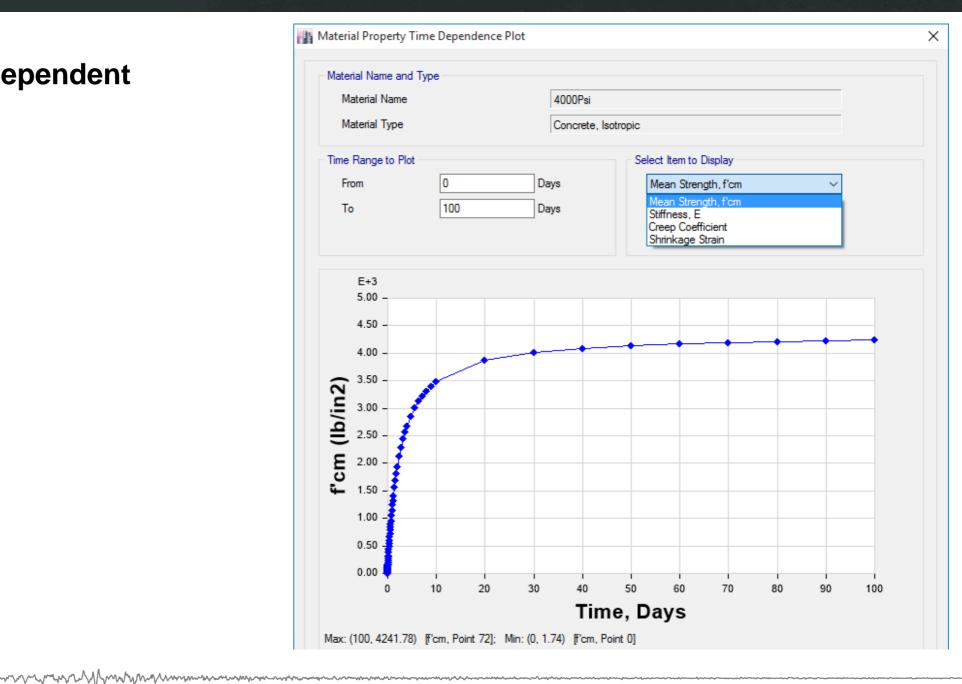
Temperature Dependent Properties

- These properties are given at a series of specified material temperatures, *t*.
- Properties at other temperatures are obtained by linear interpolation between the two nearest specified temperatures.
- Properties at temperatures outside the specified range use the properties at the nearest specified temperature.

Temperature Dependent Properties

Interpolated Value

Extrapolated Value


Determination of Property E_{matt} at Temperature T_{matt} from Function E(T)

Temperature Dependent Properties

laterial Name and Type		Time Dependent Type			
Material Name	4000Psi	Current Time Dependent Type	ACI 209R-92	~	
Material Type	Concrete, Isotropic	ACI 209R-92 Parameters			
		Relative Humidity, %		50	%
ime Dependence Considere	d For	Shrinkage Start Age, days		0	
Compressive Strength	and Stiffness (Modulus of Elasticity)	Compressive Strength Factor, a		2.3	
Creep		Compressive Strength Factor, Beta		0.92	
Shrinkage		Curing Type		Moist Cure V	•
reep Analysis Type		Slump		2.7	in
Full Integration		Fine Aggregate Percentage		50	%
O Dirichlet Series		Air Content		6	%
Number of Terms		Cement Content, lb/yd3		700	
		Show Plot			

Temperature Dependent

Properties

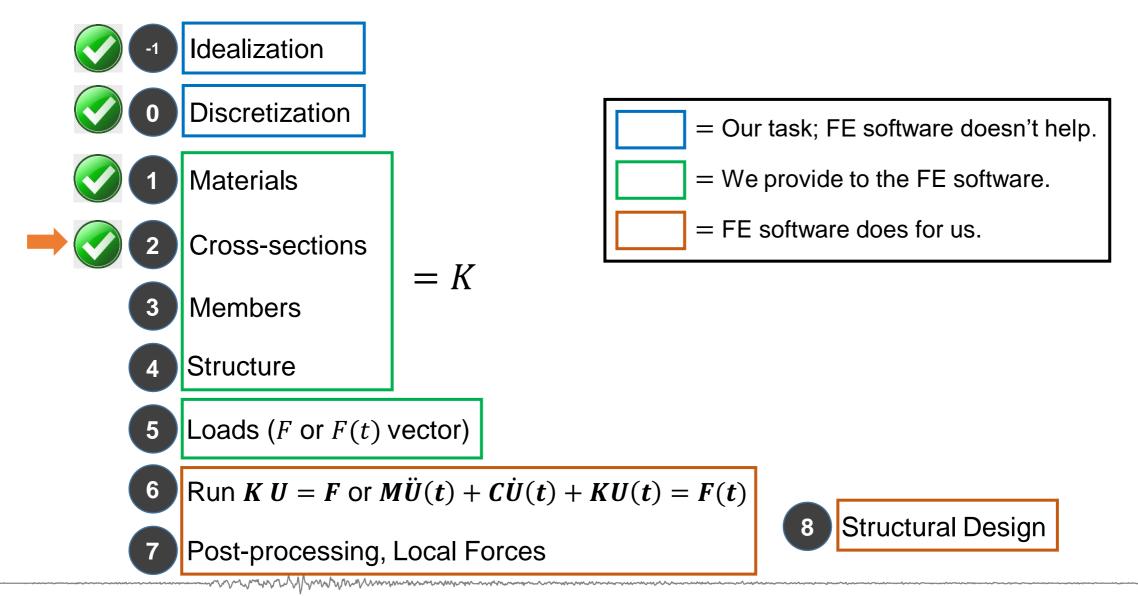
Material Damping

aterial Name and Type		
Material Name		4000Psi
Material Type		Concrete, Isotropic
odal Damping		
Damping Ratio	0	Make Other Damping Similar
Note: Applies to Respo	inse Spectrum and Modal Time His	tory load cases. Also applies to Direct
Integration Time History	load cases where Modal Damping	tory load cases. Also applies to Direct has been specified.
Integration Time History	load cases where Modal Damping	
Integration Time History scous Proportional Damp	load cases where Modal Damping	has been specified.
Integration Time History scous Proportional Damp Mass Coefficient Stiffness Coefficient	load cases where Modal Damping	has been specified. Make Other Damping Similar

Nonlinear Material Properties

Used in the nonlinear modeling of elements using the

- Fiber Hinges
- Layered Shell Element


Will be discussed in Lecture 6(b): Nonlinear Modeling of Structures

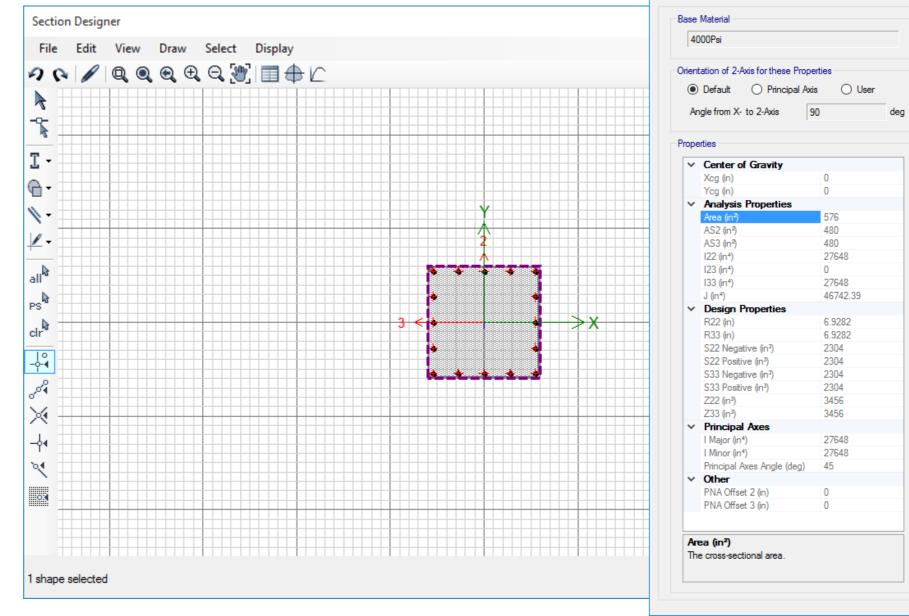
	d Type			Miscellaneous Paramet	ters			
Material Name	4000P	si		Hysteresis Type	Con	crete	~	
Material Type	Concre	ete, Isotropic		Modify/Show	Hysteresis	s Parameter	rs	
				Drucker-Prager Par	ameters			
				Friction Angle		0		de
Acceptance Crite	ria Straine			Dilatational Ang	gle [0		de
-	ension	Compression						
IO 0.01		-0.003	in/in	Stress Strain Curve De	finition Op	otions		_
LS 0.02		-0.006	in/in	Parametric	Mander		~	^
					Simple Mander			
_		-0.015	in/în		_			
✓ Ignore Te	nsion Accep	otance Criteria		User Defined				
Parametric Strain	Data							
		pressive Strength, f	í'c		[0.002219		
Strain at Unco	nfined Comp	_	i'c					
Strain at Unco Ultimate Unco	nfined Comp nfined Strair	n Capacity	i'c		[0.005		
Strain at Unco Ultimate Unco	nfined Comp nfined Strair	_	ïc		[
Strain at Unco Ultimate Unco	nfined Comp nfined Strair	n Capacity	í'c		[0.005		
Ultimate Unco	nfined Comp nfined Strair	n Capacity	f'c Show Stress-	Strain Plot	[0.005		
Strain at Unco Ultimate Unco	nfined Comp nfined Strair	n Capacity		Strain Plot	[0.005		
Strain at Unco Ultimate Unco	nfined Comp nfined Strair	n Capacity		Strain Plot	[0.005		


📲 Nonlinear Material Data

X

Finite Element Modeling, Analysis and Design Process

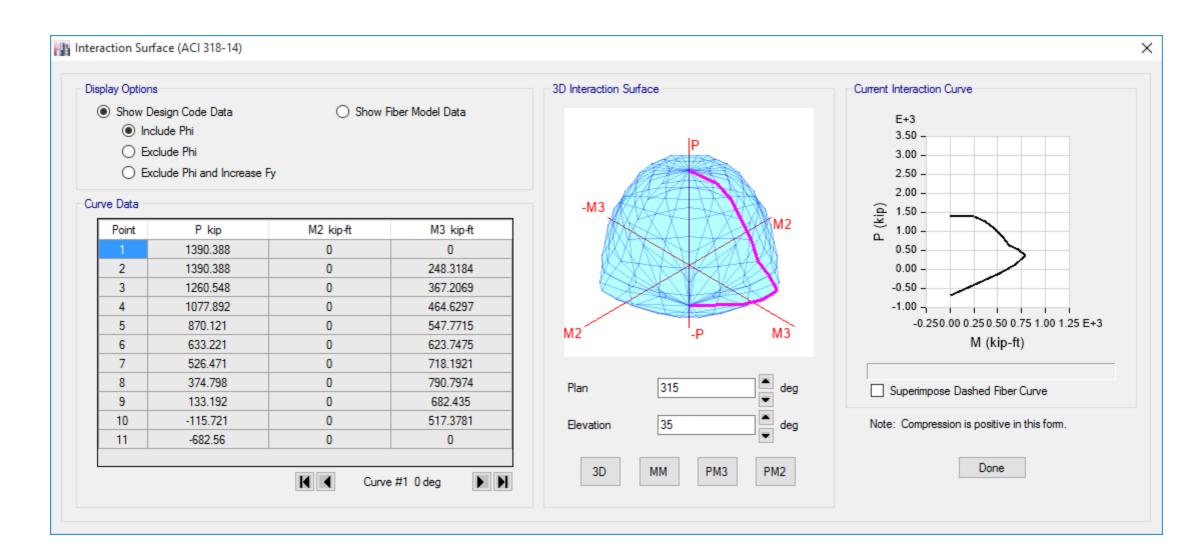
Cross-section Properties of Frames

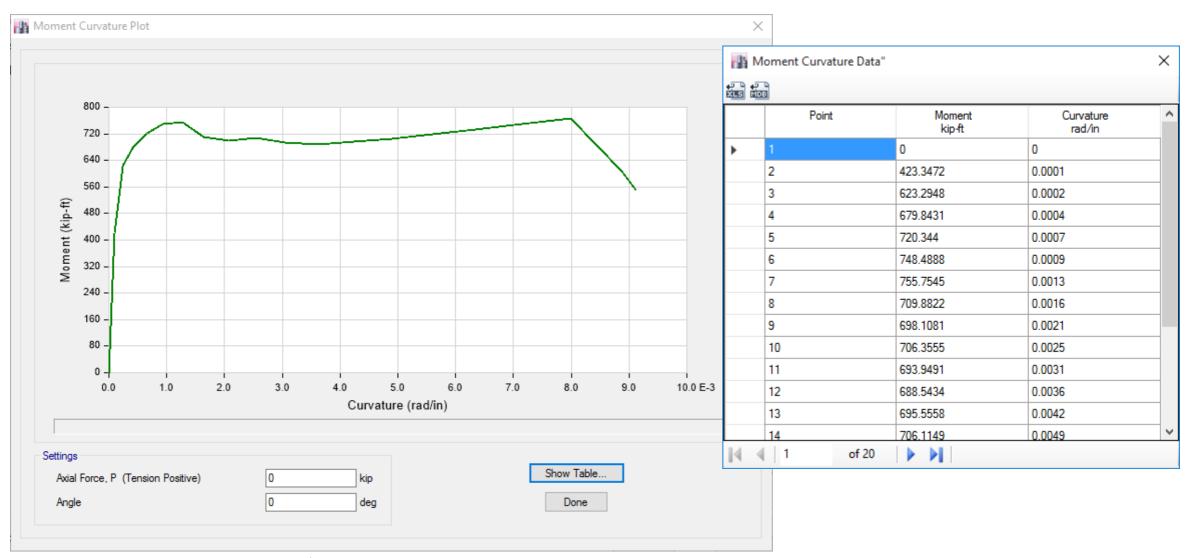


General Data		
Property Name	ConcCol	
Material	4000Psi ~	2
Notional Size Data	Modify/Show Notional Size	3
Display Color	Change	• • •
Notes	Modify/Show Notes	• •
Shape		• • •
Section Shape	Concrete Rectangular 🗸 🗸	
Depth Width	18 in	Reinforcement Modify/Show Rebar
		ОК
	Show Section Properties	Cancel
	e Area Over Column	

Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

www.mww.M/www.www.www.www.www.www.www.www.


Section Designer


Section Properties

×

P-M2-M3 Interaction Surface (Capacity Surface)

Moment-Curvature Relationship of a Cross-section

Reinforcement Data for Beams (M3) and Columns (P-M2-M3)

esign Type		Rebar Mat	erial			
P-M2-M3 Design (Column)		Longitu	Longitudinal Bars		A615Gr60 ~ .	
M3 Design Only (I	Beam)	Confine	ement Bars (Ties)	A615Gr6	0	~
coverto Longitudinal Rel	bar Group Cent	roid	Reinforcement A	vrea Overwrit	es for Ductile Bea	ams
Top Bars	2.5	in	Top Bars at I	-End	0	in²
Bottom Bars	2.5	in	Top Bars at J	-End	0	in²
			Bottom Bars a	at I-End	0	in²
			Bottom Bars a	at J-End	0	in²
Beams		OK	Cance	ł		
		L				

Design Type	Rebar M	laterial		
P-M2-M3 Design (Colum)	n) Longi	itudinal Bars	A615Gr60	~
O M3 Design Only (Beam)	Confi	nement Bars (Ties)	A615Gr60	~
Reinforcement Configuration	Confinen	nent Bars	Check/Design	
Rectangular	● Ti	es	 Reinforcerr 	nent to be Checked
⊖ Circular	0 SI	pirals	Reinforcerr	nent to be Designed
Longitudinal Bars				
Clear Cover for Confinement	Bars		1.5	in
Number of Longitudinal Bars	Along 3-dir Face		3	
Number of Longitudinal Bars	Along 2-dir Face		5	
Longitudinal Bar Size and Ar	ea	#9	~ 1	in ²
Corner Bar Size and Area		#9	~ 1	in²
Confinement Bars				
Confinement Bar Size and A	rea	#4	× 0.2	in²
Longitudinal Spacing of Con	finement Bars (Along 1	-Axis)	6	in
Number of Confinement Bars	in 3-dir		3	
Number of Confinement Bars	in 2-dir		3	
	OK	Cance	el	Colum

Stiffness Modifiers for Cracked Sections

Property/Stiffness Modification Factors	× Property/Stiffness Modification Factors	×
Property/Stiffness Modifiers for Analysis Cross-section (axial) Area 1 Shear Area in 2 direction 1 Shear Area in 3 direction 1 Torsional Constant 1 Moment of Inertia about 2 axis 1	Property/Stiffness Modifiers for Analysis Membrane f11 Direction 1 Membrane f22 Direction 1 Membrane f12 Direction 1 Bending m11 Direction 1 Bending m22 Direction 1	Membrane direct forces Membrane shear force Plate bending moments
Moment of Inertia about 2 axis I Moment of Inertia about 3 axis 1 Mass 1 Weight 1	Bending m12 Direction 1 Shear v13 Direction 1 Shear v23 Direction 1	 Plate twisting moment Plate transverse shear forces
Frames	Mass 1 Weight 1 Shells	
OK	OK Cancel	

Cracked-section Properties for Shear Walls

- Flexural and axial behaviours are modified by either f11 or f22 depending on the orientation of the local axis and the shear behaviour is controlled by f12.
- In ETABS, the default is to have the 1-axis horizontal and the 2-axis vertical. This means that the flexural modifier for El should be applied to f22 for wall piers.
- Generally not designed for out-of-plane bending to avoid excessive longitudinal reinforcement. Use a small modifier of 0.25 for m11, m22 and m12 so numerical instabilities could be avoided.

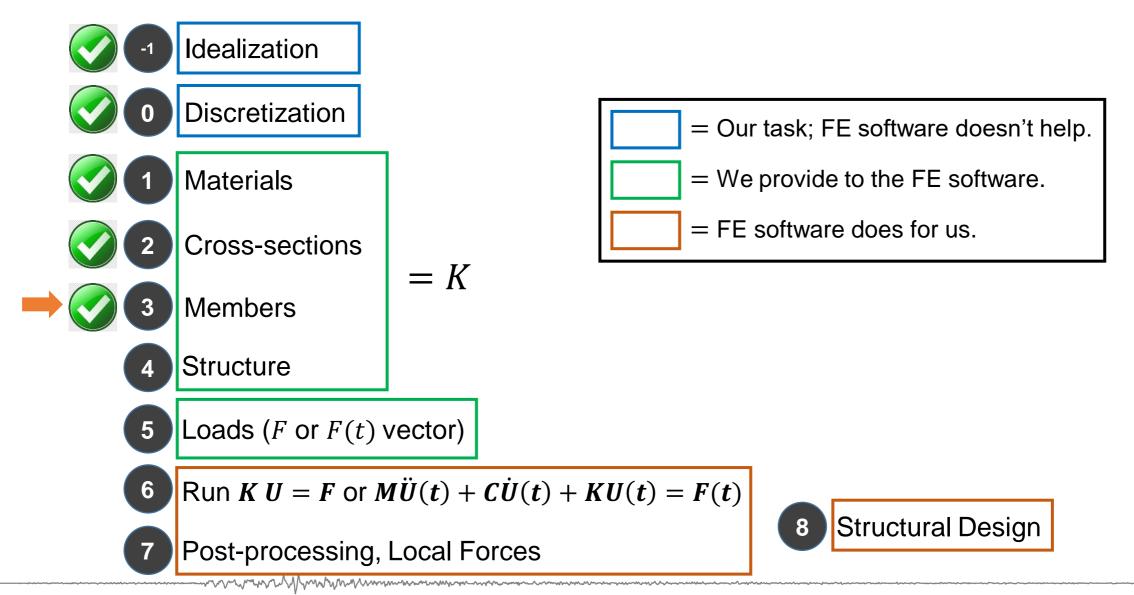
Stiffness Assumptions in Finite Element Models for Strength Design Source: Mr. Thaung Htut Aung (AIT Solutions, AIT)

•	5 5	
Concrete Element	Seismic	ETABS
	Flexural (In-plane) – 0.7 I _g	f22 = 0.7
Core walls/shear walls	Flexural (Out-of-plane) – 0.25 l _g	m11 = m22 = m12 = 0.25
	Shear (In-plane) – 1.0 A _g	
Basement walls	Flexural (In-plane) – 0.8 I _g	m11 = m22 = m12 = 0.8
Dasement wans	Shear (In-plane) – 0.5 A _g	f12 = 0.5
Coupling beams	Flexural – 0.07 (L/h) $I_g \leq 0.3 I_g$	$133 = 0.07 (L/h) \le 0.3$
(Diagonal-reinforced)	Shear – 1.0 A _g	
Coupling beams	Flexural – 0.07 (L/h) $I_g \le 0.3 I_g$	$133 = 0.07 (L/h) \le 0.3$
(Conventional-reinforced)	Shear – 1.0 A _g	
Transfer diaphragms (In-plane)	Flexural – 0.1 I _g	f11 = f22 = 0.1
nunsier diapinagins (in plane)	Shear – 0.1 A _g	f12 = 0.1
Tower diaphragms (In-plane)	Flexural – 0.5 I _g	f11 = f22 = 0.5
lewer diaphragins (in plane)	Shear – 0.5 A _g	f12 = 0.5
Moment frame beams	Flexural – 0.35 I _g	133 = 0.35
	Shear – 1.0 A _g	
Columns	Flexural – 0.7 I _g	122 = 133 = 0.7
	Shear – 1.0 A _g	
Flat slabs (Out-of-plane)	Flexural – 0.1 I _g	m11 = m22 = m12 = 0.1
Slab with beams (Out-of-plane)	Flexural – 0.35 I _g	m11 = m22 = m12 = 0.35

Table A.8.4—Effective stiffness values^[1]

Comp	onent	Axial	Flexural	Shear
Beams	nonprestressed	$1.0E_cA_g$	$0.3E_cI_g$	$0.4E_cA_g$
Beams	prestressed	$1.0E_cA_g$	$1.0E_cI_g$	$0.4E_cA_g$
Columna with commencian coursed	$\geq 0.5 A_g f_c'$	$1.0E_cA_g$	$0.7E_cI_g$	$0.4E_cA_g$
Columns with compression caused - by design gravity loads ^[2]	$\leq 0.1 A_g f_c'$ or with tension	$1.0E_cA_g$ (compression) $1.0E_sA_{st}$ (tension)	$0.3E_cI_g$	$0.4E_cA_g$
Ctm. ct	in-plane	$1.0E_cA_g$	$0.35E_cI_g$	$0.2E_cA_g$
Structural walls ^[3]	out-of-plane	$1.0E_cA_g$	$0.25E_cI_g$	$0.4E_cA_g$
	nonprestressed	$0.25E_cA_g$	$0.25E_cI_g$	$0.25E_cA_g$
Diaphragms (in-plane only) ^[4]	prestressed	$0.5E_cA_g$	$0.5E_cI_g$	$0.4E_cA_g$
Coupling beams	with or without diagonal reinforcement	$1.0E_cA_g$	$0.07 \left(\frac{\ell_n}{h}\right) E_c I_g$ $\leq 0.3 E_c I_g$	$0.4E_cA_g$
Mat foundations	in-plane	$0.5E_cA_g$	$0.5E_cI_g$	$0.4E_cA_g$
	out-of-plane ^[5]		$0.5E_cI_g$	

^[1]Tabulated values for axial, flexural, and shear shall be applied jointly in defining effective stiffness of an element, unless alternative combinations are justified.


^[2]For columns with axial compression falling between the limits provided, flexural stiffness shall be determined by linear interpolation.

^[3]Tabulated values are appropriate where members are modeled using line elements to represent their properties.

^[4]Diaphragms shall be permitted to be modeled as rigid in-plane if this does not result in differences in analysis outcomes.

^[5]Specified stiffness values for mat foundations pertain for the general condition of the mat. Where the wall or other vertical members imposed sufficiently large forces, including local force reversals across stacked wall openings, the stiffness values may need to be reduced.

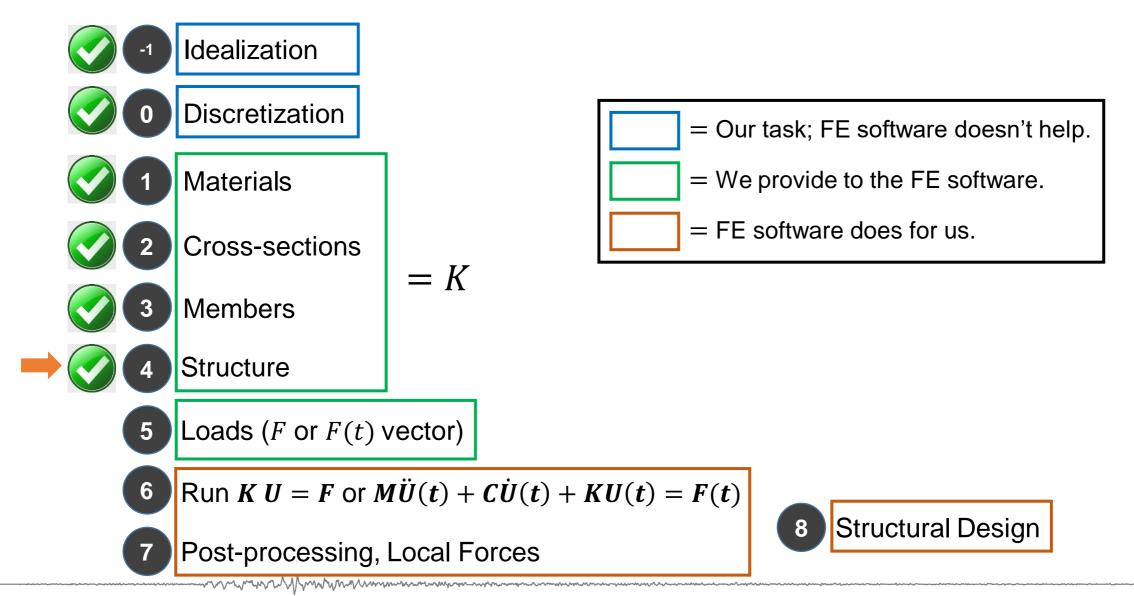
Finite Element Modeling, Analysis and Design Process

"Draw" Members

- Draw Joint Objects
- Draw Beam/Column/Brace Objects X
 - Draw Beam/Column/Brace (Plan, Elev, 3D)
 - Quick Draw Beams/Columns (Plan, Elev, 3D)
 - [I] Quick Draw Columns (Plan)
 - 🗾 Quick Draw Secondary Beams (Plan)
 - Quick Draw Braces (Elev)
- Draw Floor/Wall Objects
 - Draw Floor/Wall (Plan, Elev, 3D)
 - Draw Rectangular Floor/Wall (Plan, Elev)
 - Quick Draw Floor/Wall (Plan, Elev)
 - 🗳 Draw Walls (Plan)
 - 🚺 Quick Draw Walls (Plan)
 - Draw Wall Openings (Plan, Elev, 3D)
- Draw Links 🛰

TABS Ultimate 17.0.1 - ads								
Edit View Define	Drav	w Select Assign Analy	ze Display	Des				
🔌 💾 🕫 🖗 🖋	R	Select Object		lå				
Model Explorer	7	Reshape Object		-D				
Model Display Tables R	•	Draw Joint Objects						
<mark>⊕ ·· Project</mark>	×	Draw Beam/Column/Brace	Objects 🔹 🕨	 Draw Tendons 				
		Draw Floor/Wall Objects	•	Draw Design Strips				
	×	Draw Links	Draw Grids					
	يگ	Draw Tendons		 Draw Dimension Lines 				
	₽	Draw Design Strips		 Draw Dimension Lines Draw Reference Points 				
		Draw Grids		 Draw Reference Planes III Draw Reference Planes IIII 				
	, L	Draw Dimension Lines		 Draw Reference Planes - Draw Section Cut 				
	×	Draw Reference Points		il.				
		Draw Reference Planes		Draw Developed Elevation Definition **				
		Draw Section Cut		 Draw Wall Stacks (Plan, Elev, 3D) Auto Draw Cladding 				
		Draw Developed Elevation D	efinition	 Snap Options [*] 				
	⊞	Draw Wall Stacks (Plan, Elev,	3D)					
		Auto Draw Cladding	The draw mod	de remains enabled until one of the following actions is tak-				
	*?	Snap Options	en to return to	the select mode:				
		Draw Using Snap Only	 Click 	the Pointer button on the toolbar 👌.				
		Working Planes		the Esc key on the keyboard.				
	_		 Select 	t a command from the Select menu.				

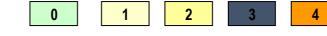
Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)


E E

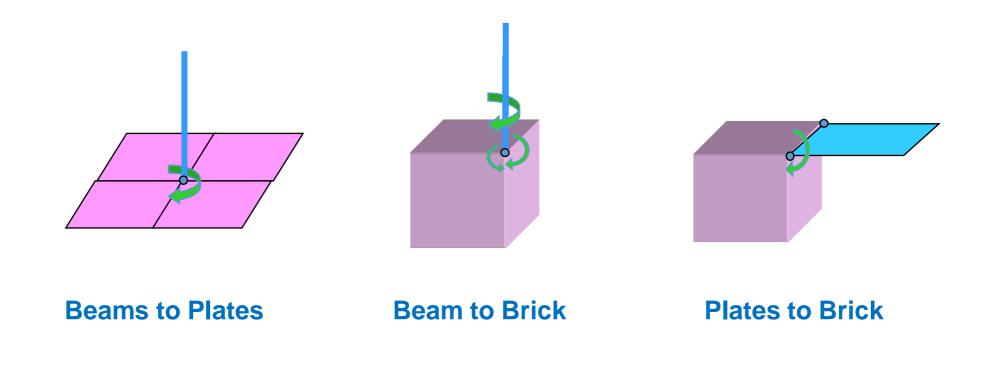
File

R

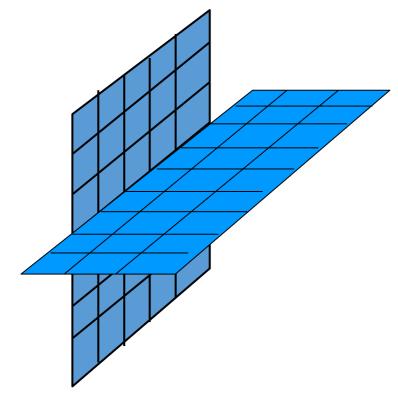
Ŀ

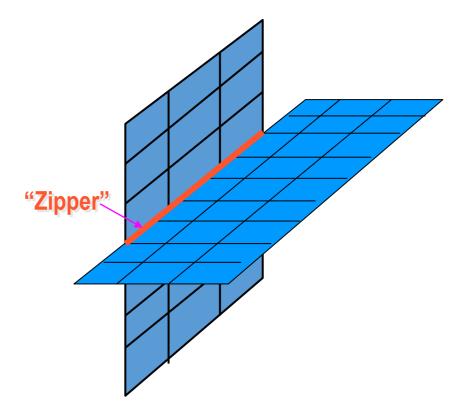

Finite Element Modeling, Analysis and Design Process

Connecting Different Types of Elements

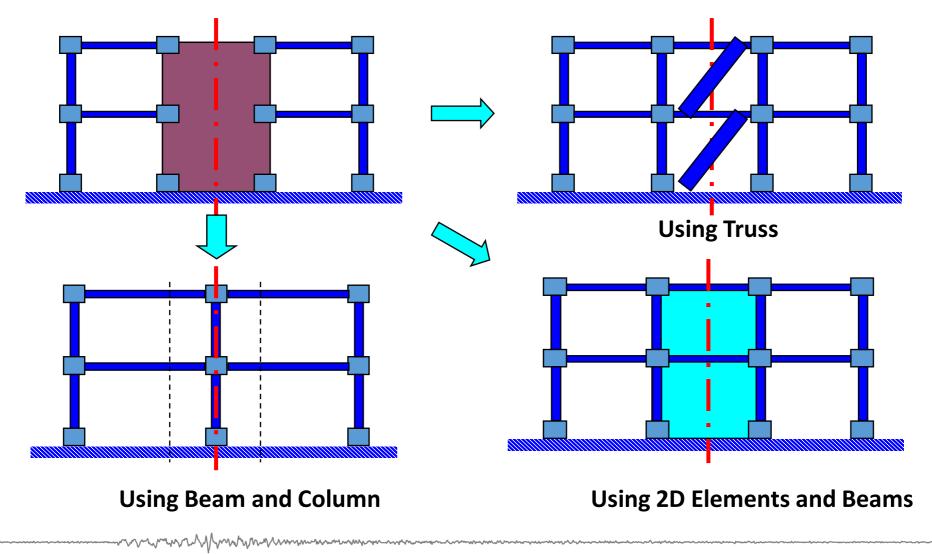

RZ = Drilling DOF (Let's assume that it is available in membrane and shell)

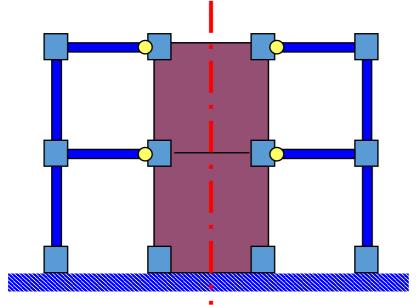
RZ		Available DOFs/node	Truss	Frame	Membrane	Plate	Shell	Solid
	Truss	UX, UY, UZ	ОК	OK	UZ	OK	OK	ОК
UX RX UY Frame RY	Frame	UX, UY, UZ, RX, RY, RZ	RX, RY, RZ	ОК	RX, RY, UZ	UX, UY, RZ	ОК	RX, RY, RZ
	Membrane	UX, UY, RZ	RZ	ОК	ОК	UX, UY, RZ	OK	RZ
RZ	Plate	UZ, RX, RY	RX, RY	ОК	UZ, RX, RY	ОК	ОК	RX, RY
	Shell	UX, UY, UZ, RX, RY, RZ	RX, RY, RZ	OK	UZ, RX, RY	UX, UY, RZ	ОК	RX, RY, RZ
UY RX	Solid	UX, UY, UZ	ОК	ОК	UZ	UX, UY	OK	ОК
RY Shell	Orphan Degrees of Freedom							




Connecting Dissimilar Elements

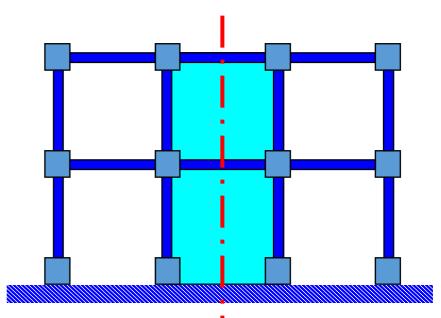
• When elements with different degree of freedom at ends connect with each other, special measures may need to be taken to provide proper connectivity **depending on the Software Capability**.


Connecting Walls to Slab



In general the mesh in the slab should match with mesh in the wall to establish connection. Some software automatically establishes connectivity by using constraints or "Zipper" elements.

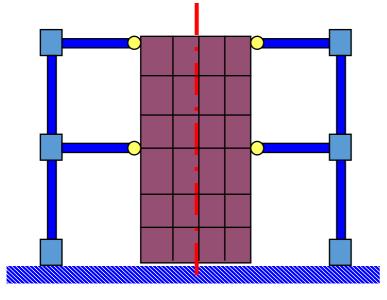
Modeling of Planer Walls

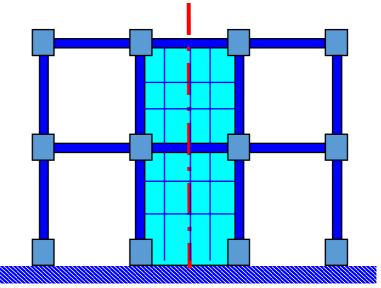


Modeling Shear Walls Using 2D Elements

Modeling Shear-Walls using 2D Elements only

(No Moment continuity with Beams and Columns unless 6 DOF Shell is used)

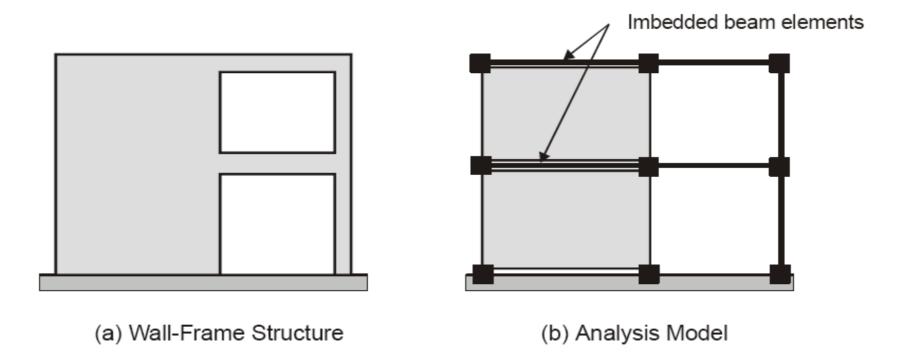



Modeling Shear-Walls using 2D Elements, Beams, Columns

(Full Moment continuity with Beams and Columns is restored by using additional beams)

Using Plates to Model Shear Walls

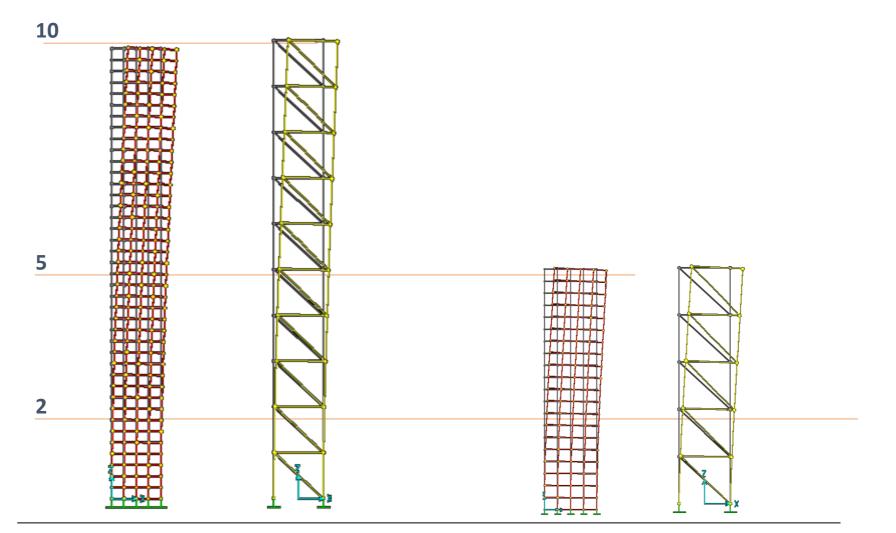
• Multiple elements results in greater accuracy in determination of stress distribution and allow easy modeling of openings.



Using 2D Elements only (No Moment continuity with Beams and Columns unless 6 DOF Shell is used) Using 2D Elements with Beams, Columns (Full Moment continuity with Beams and Columns)

Connecting a Beam to a Shear Wall

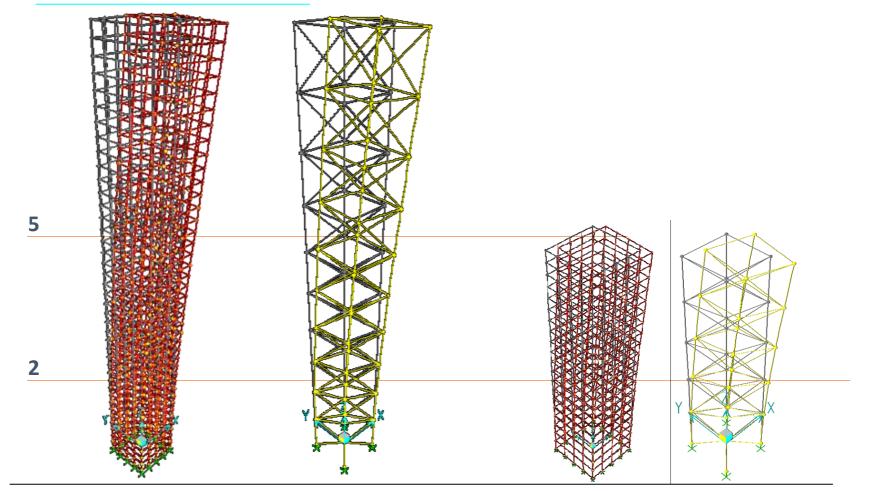
• If a beam element is connected to a shear wall, a beam element must be imbedded in the wall



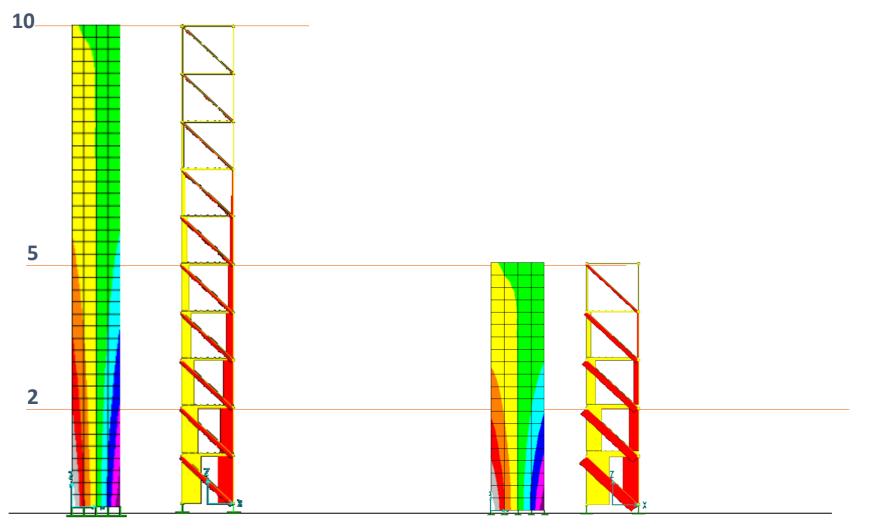
• Coupling Beams are modelled either using frame elements or shell elements

Modeling of Shear Walls Using Truss Models

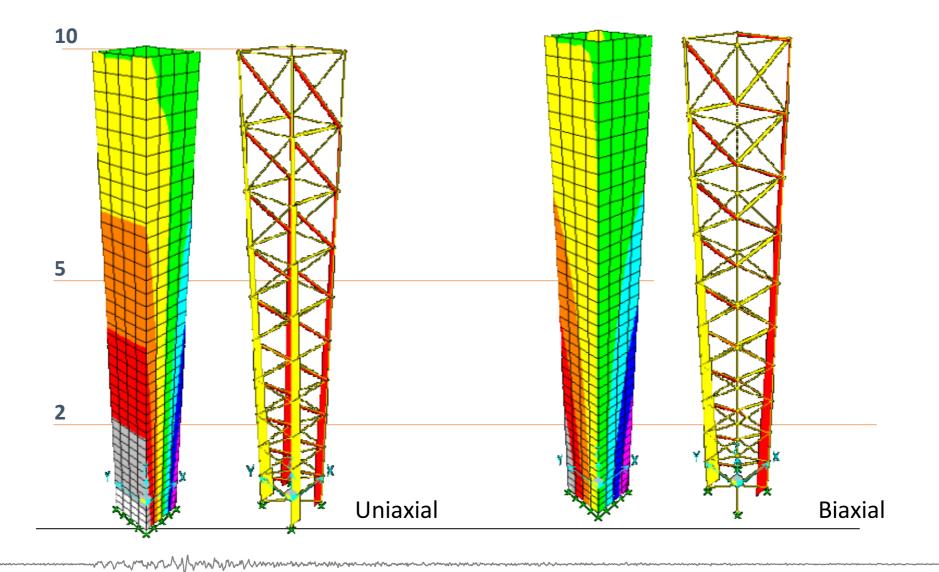
- The behavior of shear walls can be closely approximated by truss models:
 - The vertical elements provide the axial-flexural resistance
 - The diagonal elements provide the shear resistance
- Truss models are derived from the "strut-and-tie" concepts (extensively used for deep beams and shear walls).
- This model represents the "cracked" state of the wall where all tension is taken by ties and compression by concrete.
- Difficult to determine the size and reinforcement in diagonal elements.
- Nonlinear axial load-deformation hinges can be used. Hinges in diagonal struts should be force-controlled to detect shear failure or the diagonals may be forced to remain elastic.


Truss Model for Shear Walls

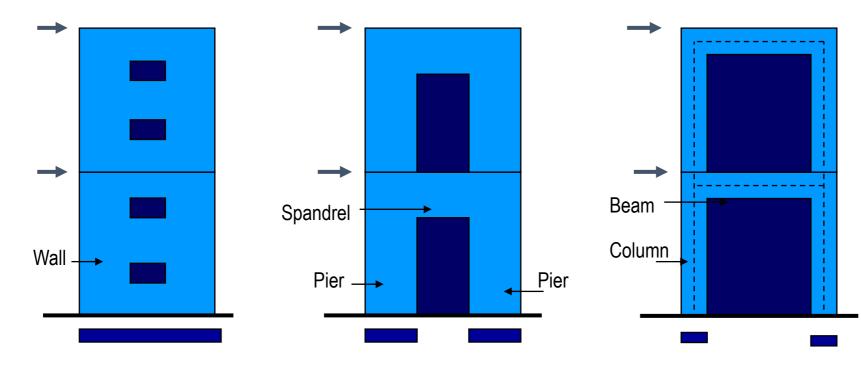
Comparing Deformation and Deflections of Shell Model with Truss Model


Truss Model for Shear Walls

10

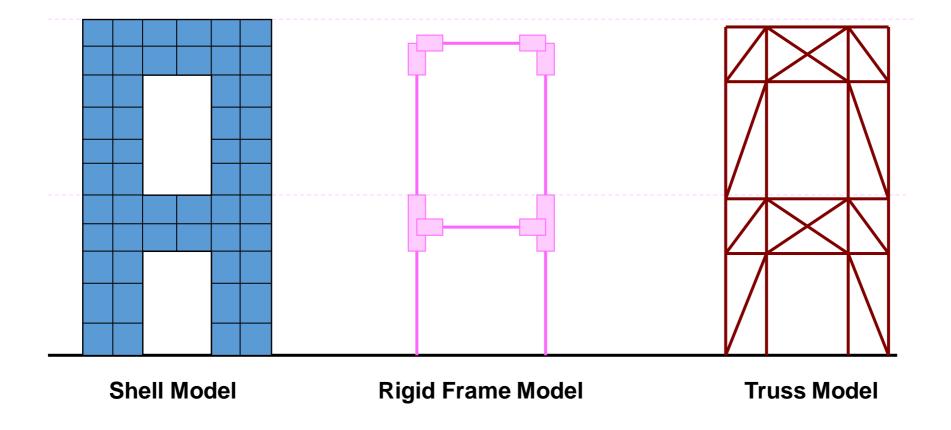

Comparing Deformation and Deflections of Shell Model with Truss Model

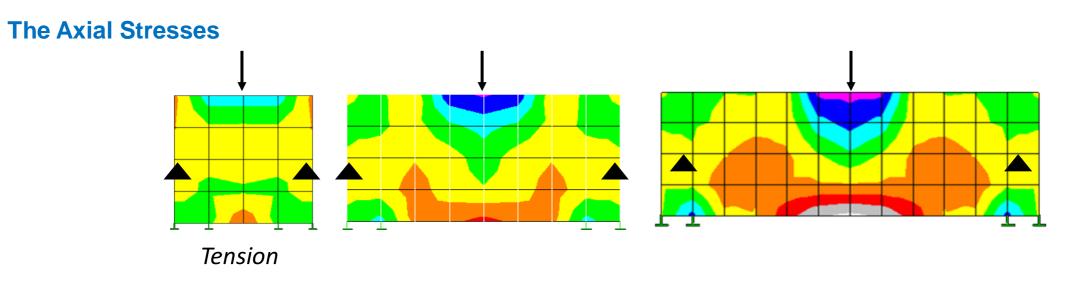
Truss Models for Shear Walls

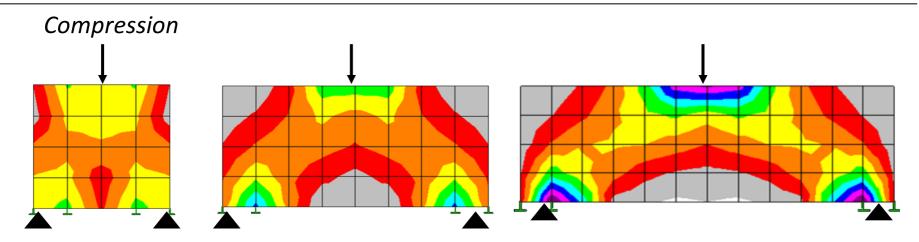


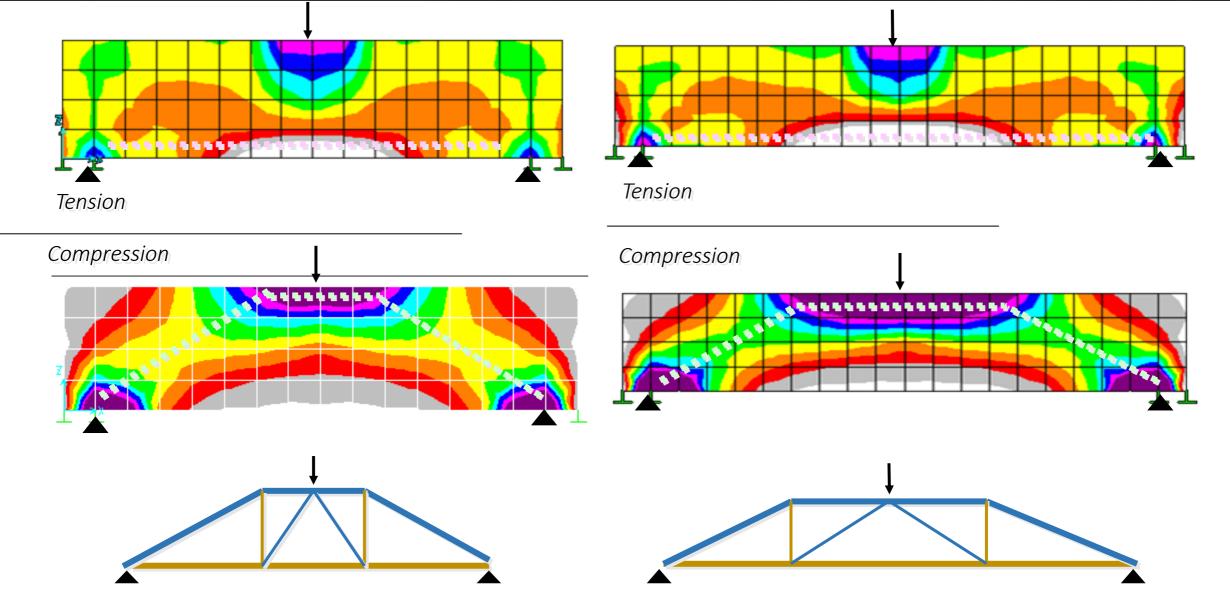
Comparing Axial Stress and Axial Force Patterns

Truss Models for Shear Walls

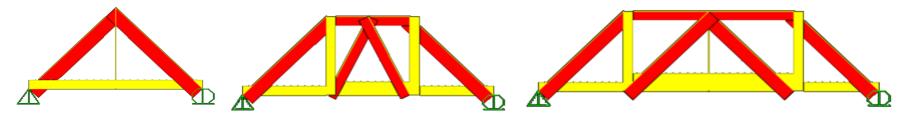

Modeling of Openings in Shear Walls

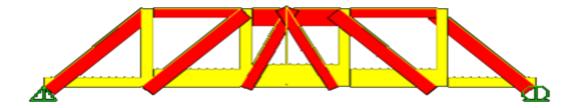

Very Small Openings may not alter wall behaviour Medium Openings may convert shear wall to Pier and Spandrel System

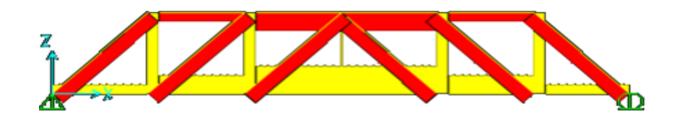

Very Large Openings may convert the Wall to Frame


Modeling Walls with Opening

Special Modeling Techniques for Transfer Girders and Deep Beams

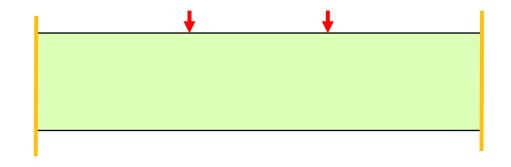


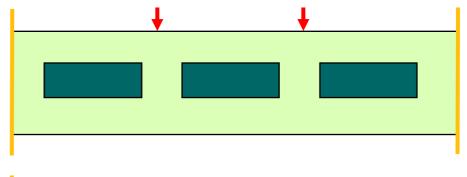


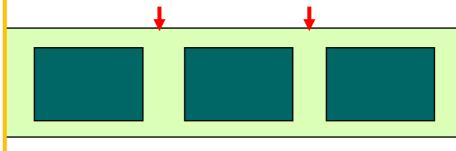

The Hidden Truss in Members

Truss Models for Deep Beams

The Axial Forces in Truss Elements

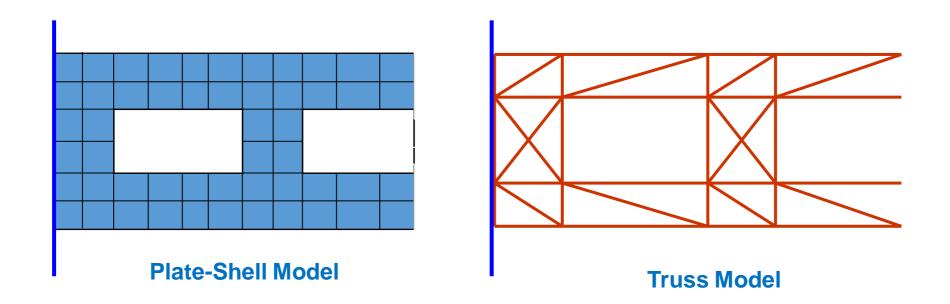





Deep Beam or Veirendel Girders

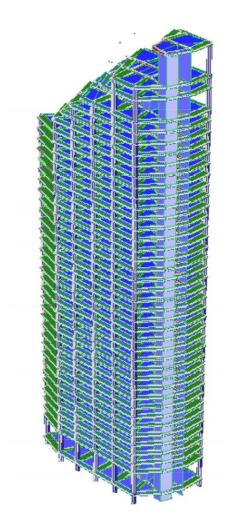
• Deep Beam

 Deep Beam or Veirendel Girder

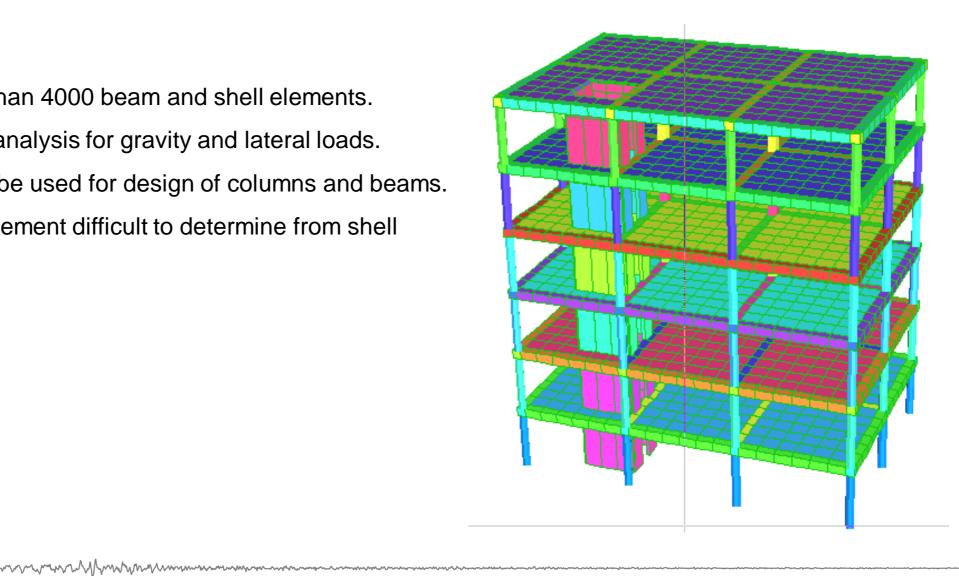


• Veirendel Girder

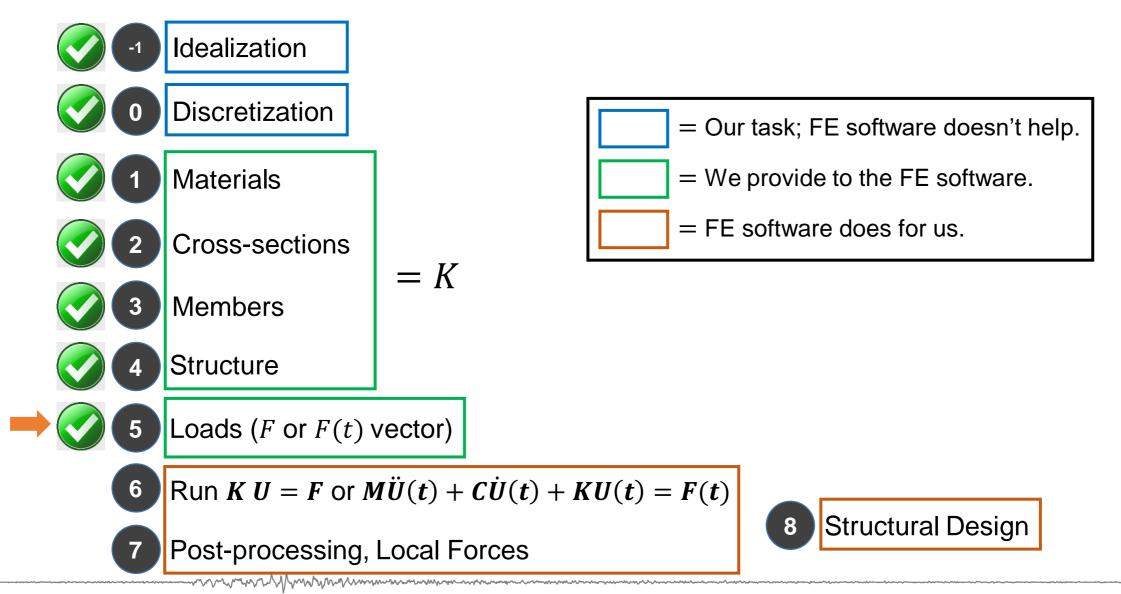
Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)


Modeling Openings in Beams

Full 3D Finite Element Model


- The columns and beams are modeled by using frame elements.
- The slabs and shear walls are modeled by using shell elements.
 - At least 9 or 16 elements in each slab panel must be used if gravity loads are applied to the slabs.
 - If the model is only for lateral analysis, one element per slab panel may be sufficient to model the in-plane stiffness.
 - Shear walls may be modeled by membrane or shell or plane stress element.

The out of plane bending is not significant.



Full 3D Finite Element Model

- Example:
 - Uses more than 4000 beam and shell elements.
 - Suitable for analysis for gravity and lateral loads.
 - Results can be used for design of columns and beams.
 - Slab reinforcement difficult to determine from shell results.

Finite Element Modeling, Analysis and Design Process

Load Patterns, Load Cases and Load Combinations

Load Patterns, Load Cases and Load Combinations

- A Load Pattern is a specified spatial distribution of forces, displacements, temperatures, and other effects that act upon the structure.
- A Load Pattern by itself does not cause any response of the structure. Load Patterns must be applied in Load Cases in order to produce results.
- A Load Case defines how the Load Patterns are to be applied (e.g., statically or dynamically), how the structure responds (e.g., linearly or nonlinearly), and how the analysis is to be performed (e.g., modally or by direct-integration.)
- A Load Case may apply a single Load Pattern or a combination of Load Patterns.
- The results of Load Cases can be combined after analysis by defining Load Combinations. A Load Combination is a sum or envelope of the results from different Load Cases.
- For linear problems, algebraic-sum types of Load Combinations make sense. For nonlinear problems, it is usually best to combine Load Patterns in the Load Cases, and use Load Combinations only for computing envelopes.
- When performing design, only the results from Load Combinations are used. Load Combinations can be automatically created by the design algorithms, or you can create your own. If necessary, you can define Load Combinations that contain only a single Load Case.

Load Patterns

bads				Click To:
Load	Туре	Self Weight Multiplier	Auto Lateral Load	Add New Load
Dead	Dead ·	× <u>1</u>	~	Modify Load
Dead Live	Super Dead Live	o		Modify Lateral Load
	Reducible Live Roof Live Notional Seismic Seismic (Drift) Wind			Delete Load
	Snow Construction Prestress-Final Prestress-Transfer			OK Cancel

None None ASCE 7-16 AS 1170 2007 Chinese 2010 Dominican Republic R-001 EUROCODE8 2004 IS 1893:2016 KBC 2016 NBCC 2015 Italian NTC 2008 NZS 1170 2004 TCVN 9386:2012 TSC-2018 User Coefficient User Loads BOCA 96 ASCE 7-02 ASCE 7-05 ASCE 7-10 IS1893 2002 KBC 2009 NBCC 95 NBCC 2005 NBCC 2010 NEHRP 97 TSC-2007 UBC 94

UBC 97

UBC 97 Isolated

Auto Lateral Load

 \sim

Mass Source

- The mass used as inertia in dynamic analyses or to calculate certain types of loads can be controlled by specifying the Mass Source.
- Multiple Mass Sources can be defined so that different load cases can use a different mass distributions for loading and inertia. Examples could include e.g.
 - Modeling a structure supporting different configurations of equipment, or
 - Explicitly considering the effect of different eccentricities of the story mass on the mode shapes.
- There are three possible contributions to a Mass Source:
 - Element Self Mass This includes the mass from the section properties used by the elements. For the Link/Support elements, this mass is explicitly defined in the section property. For all other elements the mass comes from the material property referenced by the section property.
 - Additional Mass This includes mass as signed to the joints and any additional mass as signed to the frame or shell elements.
 - Specified Load Patterns Mass is computed from the gravity load as computed from a specified linear combination of load patterns.

Mass Source

Mass Source Data		×
Mass Source Name MsSrc1 Mass Source	Mass Multipliers for Load Patterns Load Pattern Multiplier Dead 1 Add Modify Delete Mass Options Include Lateral Mass Include Vertical Mass Lump Lateral Mass at Story Levels	Click to: Add New Mass Source
OK Cancel	=	Add Copy of Mass Source Modify/Show Mass Source Delete Mass Source
Be careful not to double-count the self-mass by s both Element Self mass and a load pattern that co		OK Cancel

self-weight.

Different Mass Sources in Different Cases

- The default mass source will be used for all Load Cases unless specified otherwise.
- A specified Mass Source can be selected for the following types of load cases:
 - Nonlinear static
 - Nonlinear staged-construction
 - Nonlinear direct-integration time-history
- Response-spectrum and modal time-history load cases use the Mass Source of their corresponding modal load case.

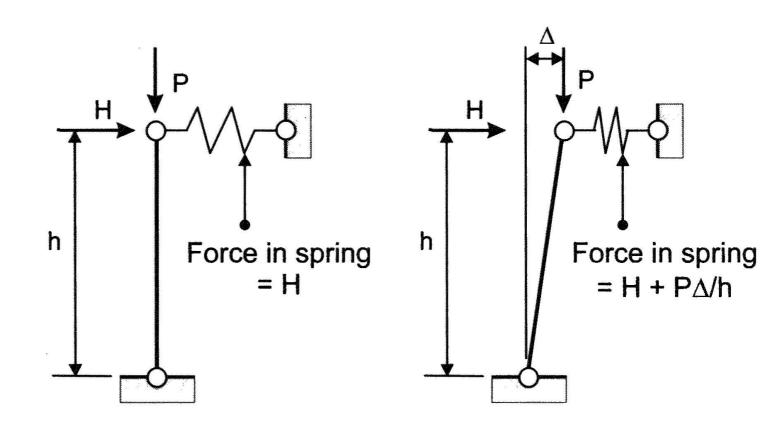
Different Mass Sources in Different Cases

- For example, consider the case where a response-spectrum analysis is to be carried out for a tower both with and without a significant equipment load. You could do the following:
 - Define two load patterns
 - **DEAD**, which includes the self-weight of the tower structure
 - LIVE, which includes only the weight of the equipment
 - Define two mass sources
 - MASSDEAD (only the load pattern DEAD with a scale factor of 1, no Element Self Mass or Additional Mass
 - MASSDEADLIVE, (both load patterns DEAD and LIVE, each with a scale of 1, no Element or Additional Mass)
 - · Define two nonlinear static load cases
 - **DEAD**, which specifies mass source **MASSDEAD**
 - **DEADLIVE**, which specifies mass source **MASSDEADLIVE**
 - Define two modal load cases
 - MODALDEAD, which uses the stiffness of load case DEAD
 - MODALDEADLIVE, which uses the stiffness of load case DEADLIVE

Different Mass Sources in Different Cases

- Define two response-spectrum load cases
 - One which uses the modes of load case **MODALDEAD**
 - the other which uses the modes of load case MODALDEADLIVE
- Note that in the above example the nonlinear static load cases were used only to specify the Mass Source. However, in most practical cases you would also want to apply the corresponding load patterns as loads and consider P-delta effects, as these would likely also have an effect on the modes.
- Note that the response-spectrum cases, in addition to considering the inertial effect of the different masses on the modes, also apply acceleration loads that are based on mass. These loads will automatically be based on the mass from the same Mass Source used to calculate the modes.

Geometric Nonlinearity

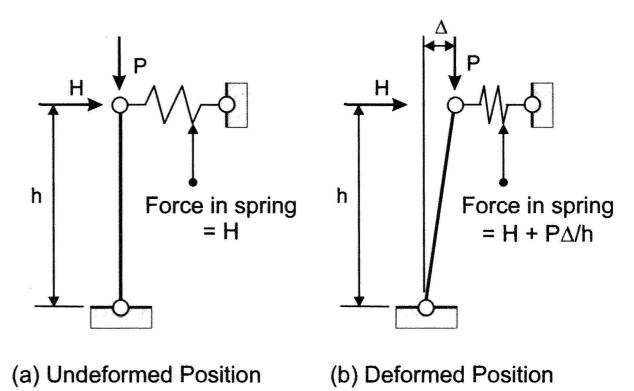

- If the load on the structure and/or the resulting deflections are large, then the load-deflection behavior may become nonlinear.
- Several causes of this **nonlinear behavior** can be identified:
 - **P-delta effect:** when large stresses (or forces and moments) are present within a structure, equilibrium equations written for the original and the deformed geometries may differ significantly, even if the deformations are very small.
 - Large-displacement effect: when a structure undergoes large deformation (in particular, large strains and rotations), the usual engineering stress and strain measures no longer apply, and the equilibrium equations must be written for the deformed geometry. This is true even if the stresses are small.
 - Material nonlinearity: when a material is strained beyond its proportional limit, the stress-strain relationship is no longer linear. Plastic materials strained beyond the yield point may exhibit history-dependent behavior. Material nonlinearity may affect the load-deflection behavior of a structure even when the equilibrium equations for the original geometry are still valid.
 - Other effects: Other sources of nonlinearity are also possible, including nonlinear loads, boundary conditions and constraints.

Causes of Geometric Nonlinearity

- There are two causes of geometric nonlinearity, the first based on equilibrium and the second on compatibility (continuity).
- Geometric nonlinearity occurs when the displacements of a structure are large enough to affect one or both of the following.
 - (1) The equilibrium relationships. Equilibrium in the deformed position of the structure may be significantly different from that in the undeformed position.
 - (2) The compatibility relationships. The relationships between element deformations and element end displacements may be significantly nonlinear.

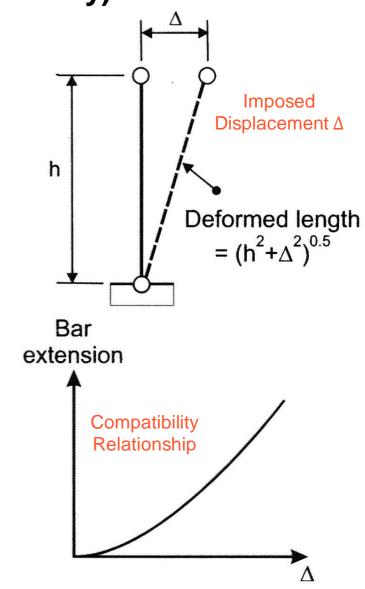
Causes of Geometric Nonlinearity: Equilibrium

- Strictly speaking, equilibrium between external loads and internal forces must be satisfied in the deformed position of the structure.
- However, if the displacements are small, it can be a reasonable approximation to consider equilibrium in the initial, undeformed position.
- Since this position is fixed, the equilibrium relationships are linear. For example, doubling the external loads exactly doubles the internal forces (assuming no material nonlinearity).

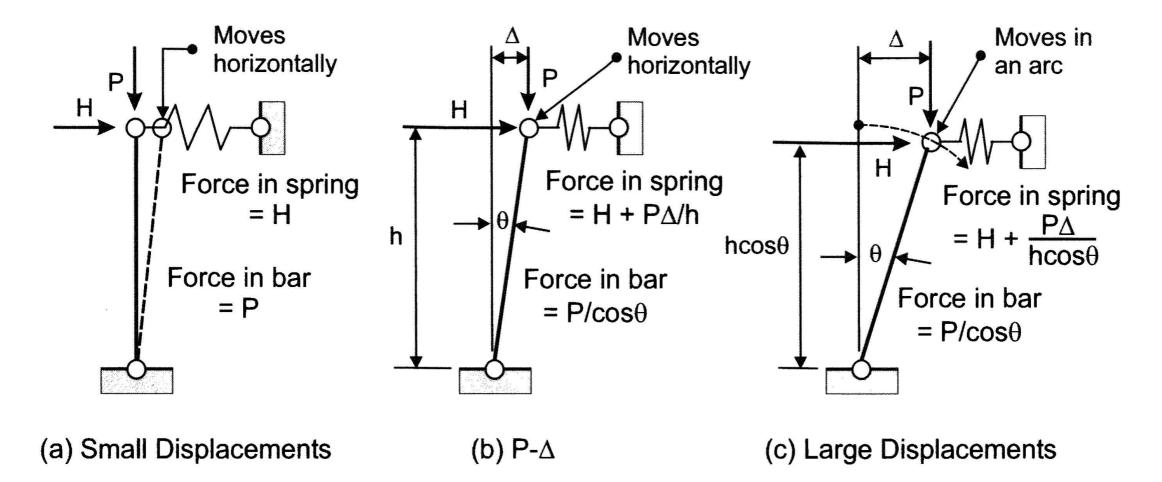

(a) Undeformed Position

(b) Deformed Position

Performance-based Seismic Design of Buildings - Semester: Spring 2020 (Fawad A. Najam)


Causes of Geometric Nonlinearity: Equilibrium

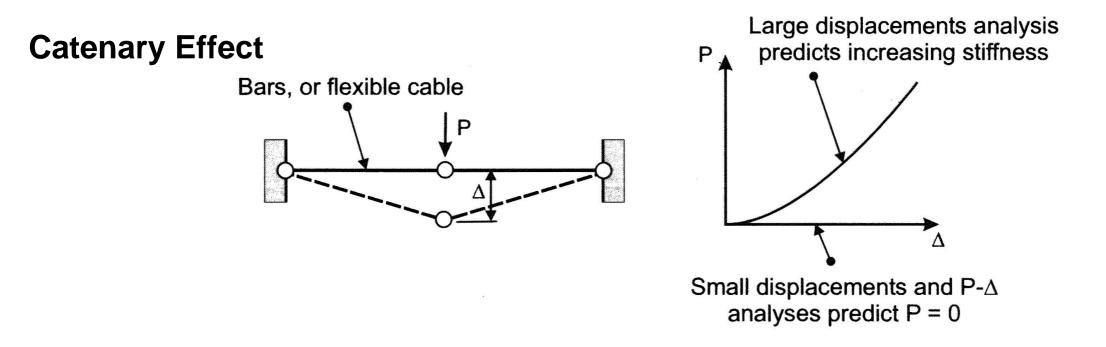
- Figure (a) shows the undeformed position. The bending moment at the pinned base must be zero, so by simple equilibrium the force in the spring is equal to the horizontal load.
- Figure (b) shows the deformed position, assuming that the spring compresses and the top of the bar moves horizontally by an amount Δ. Again, the bending moment at the base is zero, so to satisfy equilibrium the force in the spring must be larger than the applied load. Also, the spring force is not proportional to the load. For example, if P and H are doubled, the force in the spring more than doubles.


Causes of Geometric Nonlinearity: Compatibility (Continuity)

- There is a geometrical relationship between the displacements of a structure and the deformations of its components. Figure shows such a relationship.
- In Figure, the top of the bar moves horizontally. Hence, the bar must extend to maintain continuity. Figure (b) shows the relationship between displacement and bar extension. The bar extension is the deformed length minus the undeformed length, h.
- For a very small horizontal displacement the bar extension is close to zero (in the limit, for a vanishingly small displacement, the bar extension is exactly zero). For larger displacements the bar extends, with a nonlinear relationship between displacement and extension.

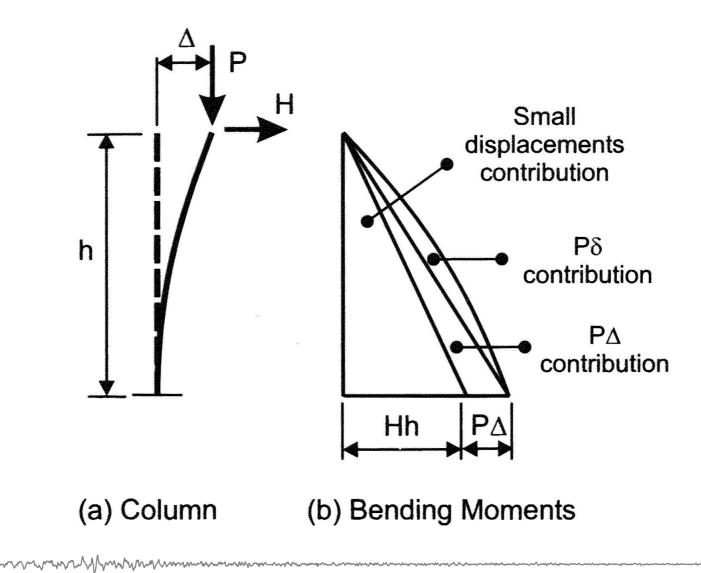
Performance-based Seismic Design of Buildings - Semester: Spring 2020 (Fawad A. Najam)

- For analysis, the effects of large displacements on the equilibrium and compatibility relationships can be treated separately.
- Consequently, there are three different types of analysis that can be carried out, as follows.
 - (1) Small displacements analysis. This is one extreme. Equilibrium is considered in the undeformed position, and for compatibility the displacements are assumed to be vanishingly small.
 - (2) True large displacements analysis. This is the other extreme. Equilibrium is considered in the deformed position, and for compatibility the displacements are assumed to be finite. The compatibility relationships are nonlinear. In this case, geometric nonlinearity is considered with no approximations.
 - (3) P-∆ analysis. This is in the middle. Equilibrium is considered in the deformed position (with some minor approximations), and the compatibility relationships are assumed to be linear. In this case, geometric nonlinearity is considered approximately.
- There is a fourth type (deformed position for equilibrium, small displacements for compatibility), but this is never used.


Assume that the bar is stiff axially, so that it has negligible axial deformation.

- The differences among the three methods depend on the relative values of the loads *P* and *H*, and on the displacement Δ. Consider two example cases as follows.
 - (1) P = 0, and Δ/h = 0.1 (i.e., 10% drift ratio, which is a very large drift for most structures). For all three methods the force in the spring is H and the force in the bar is zero. The only difference is that the vertical displacement is negligible for small displacements and P-Δ. analysis, and equal to a small value (0.005h) for large displacements analysis.
 - 2) P/H = 5, Δ/h = 0.10. For the small displacements case the forces in the spring and bar are respectively H and P. For the P-Δ case the forces are 1.5H and 0.995P. For the large displacements case the forces are 1.503H and 0.995P. The vertical displacements are essentially the same as for P = 0.
- These examples show that small displacements analysis can be in error when there are substantial gravity loads and large drifts, but only in the force in the spring (in the second example above there is an error of 50% in the spring force).

- For all three analyses the axial force in the bar is very close to *P* (because case is very close to 1.0).
- When $P-\Delta$ and large displacement analyses are compared there is very little difference in the spring forces.
- The only significant difference is that the calculated vertical deflection is zero for *P*-Δ. analysis and a small value for large displacements analysis.
- These examples roughly represent a single-story building structure (the spring models the horizontal stiffness). They
 indicate that it can be important to consider *P*-Δ effects, but that it is not necessary to consider true large
 displacements. This is important because *P*-Δ analysis can be much more efficient computationally than large
 displacements analysis.
- For building structures under gravity plus lateral loads, it is often important to consider *P*-Δ effects, but it is rarely necessary to consider true large displacements.


Practical Guideline to Account for Geometric Nonlinearity

- If geometric nonlinearity must be considered, it is almost always accurate enough to use
 P-∆ analysis.
- Only for very flexible structures, such as cable structures, is it necessary to use large displacements analysis.
- P- Δ analysis is more efficient computationally than large displacements analysis.
- For most structures, it is a waste of computer time to account for true large displacements.

- Figure shows behavior of a different type. In this example, as the structure deflects it gets progressively stiffer. This is usually referred to as the "catenary" effect.
- Only a large displacements analysis accounts for this effect. The reason is that the small displacements and $P-\Delta$ analyses assume a linear compatibility relationship between the structure displacement and the bar extension.
- In this example, the linear compatibility relationship gives zero bar extension, even for large values of Δ . Consequently the bar force is zero, and hence P = 0 in both the undeformed and deformed positions.
- The large displacements analysis uses a nonlinear compatibility relationship, as in Figure, and hence accounts for the catenary effect.

 $P-\Delta$ vs. $P-\delta$

Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

Geometric Nonlinearity

- The large-stress and large-displacement effects are both termed geometric (or kinematic) nonlinearity, as distinguished from material nonlinearity. Kinematic nonlinearity may also be referred to as second-order geometric effects.
- For each nonlinear static and nonlinear direct integration time-history analysis, you may choose to consider:

- No geometric nonlinearity
- P-delta effects only
- Large displacement and P-delta effects

Material Nonlinearity

- Material nonlinearity has a wide range of causes, many of which are poorly understood, and it is not governed by any single theory.
- Our knowledge of material nonlinearity depends almost entirely on what we observe in experiments on actual structures and structural components.
- Material nonlinearity is subject to judgment and interpretation.

Geometric Nonlinearity

- Geometrical nonlinearity has clear causes and is governed by a well-defined mathematical theory.
- Geometrical nonlinearity has two well-defined causes (equilibrium and compatibility), both of which are governed by clear mathematical rules
- Geometrical nonlinearity is not subject to judgment and interpretation.
- This does not mean, however, that geometrical nonlinearity is easy to account for in an analysis.
 Its effects can be complex and subtle, and they can be difficult to capture in an analysis model.

P-Delta Options in SAP2000/ETABS

Prese	t P-Delta Options	×
© 0	omation Method None Non-iterative - Based on Mass Iterative - Based on Loads	
Iterat	tive P-Delta Load Case	
	Load Pattern Scale Factor Add Add Modify Delete	
Re	OK Cancel	

Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

Modal Case

Modal Case Data			>
Control			
General			
Modal Case Name	Modal		Design
Modal Case SubType	Eigen	~	Notes
Exclude Objects in this Group	Eigen Ritz		
Mass Source	MsSrc1		
P-Delta/Nonlinear Stiffness			
Use Preset P-Delta Settings None		Modify/Show	
O Use Nonlinear Case (Loads at End of Case	NOT Included)		
Nonlinear Case			
Loads Applied			
Advanced Load Data Does NOT Exist			Advanced
Other Parameters			
Maximum Number of Modes		12	
Minimum Number of Modes		1	
Frequency Shift (Center)		0	cyc/sec
Cutoff Frequency (Radius)		0	cyc/sec
Convergence Tolerance		1E-09	
Allow Auto Frequency Shifting		12.05	
0	K Cano	cel	

Performance-based Seismic Design of Buildings – Semester: Spring 2020 (Fawad A. Najam)

Load Cases

Load Cases			×			
Load Cases			Load Case Data			
	Load Case Type ear Static ear Static	*	General Load Case Name Load Case Type Exclude Objects in this Group Mass Source P-Delta/Nonlinear Stiffness ① Use Preset P-Delta Settings ① Use Nonlinear Case (Loads at End Nonlinear Case Loads Applied Load Type Load Pattem Dead	Load Name S	Design Notes Notes Modify/Show Scale Factor Add Delete	_
				OK Cancel		

Load Cases

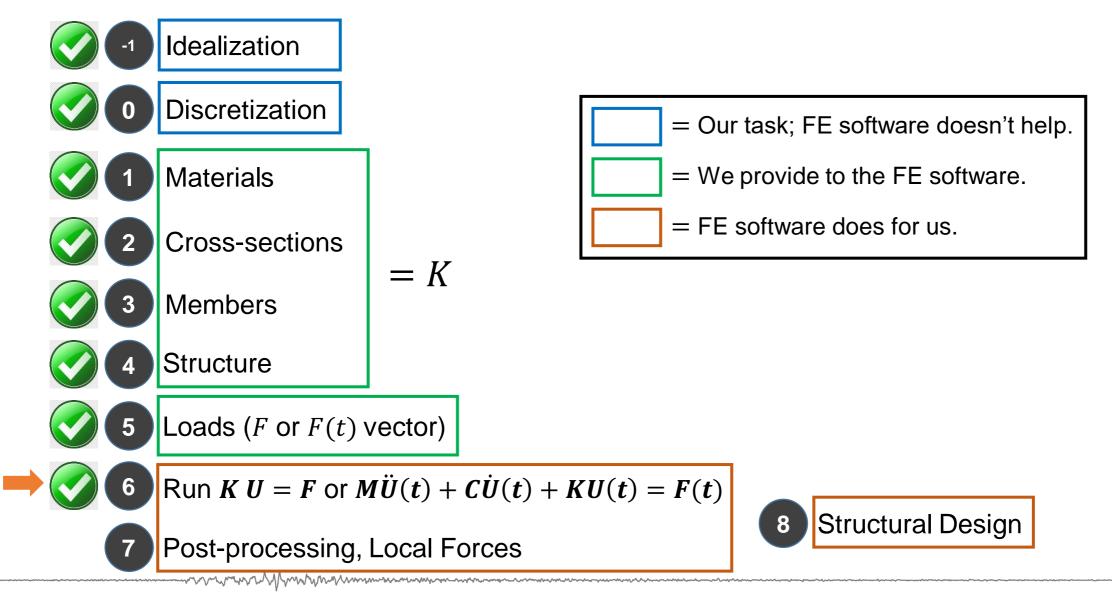
- Each different analysis performed is called a Load Case. For each Load Case you define, you need to supply the following type of information:
 - Case name: This name must be unique across all Load Cases of all types. The case name is used to request analysis results (displacements, stresses, etc.), for creating Load Combinations, and sometimes for use by other dependent Load Cases.
 - Analysis type: This indicate the type of analysis (static, response-spectrum, buckling, etc.), as well as available options for that type (linear, nonlinear, etc.).
 - Prerequisite load cases: Some load cases may continue from a previous load case, use the stiffness from a previous load case, and/or use the modes from a previous load case.
 - Loads applied: For most types of analysis, you specify the Load Patterns that are to be applied to the structure.
- Additional data may be required, depending upon the type of analysis being defined.

Linear and Nonlinear Load Cases

- Every Load Case is considered to be either linear or nonlinear.
- Structural properties
 - Linear: Structural properties (stiff ness, damping, etc.) are constant during the analysis.
 - Nonlinear: Structural properties may vary with time, deformation, and loading. How much nonlinearity actually occurs depends upon the properties you have defined, the magnitude of the loading, and the parameters you have specified for the analysis.
- Initial conditions
 - Linear: The analysis starts with zero stress. It does not contain loads from any previous analysis, even if it uses the stiffness from a previous nonlinear analysis.
 - Nonlinear: The analysis may continue from a previous nonlinear analysis, in which case it contains all loads, deformations, stresses, etc., from that previous case.
- Structural response and superposition
 - Linear: All displacements, stresses, reactions, etc., are directly proportional to the magnitude of the applied loads. The results of different linear analyses may be superposed.
 - Nonlinear: Because the structural properties may vary, and because of the possibility of non-zero initial conditions, the response may not be proportional to the loading. Therefore, the results of different nonlinear analyses should not usually be superposed.

Sequence of Analysis

- A Load Case may be **dependent** upon other Load Cases in the following situations:
 - A modal-superposition type of Load Case (response-spectrum or modal time-history) uses the modes calculated in a modal Load Case.
 - A nonlinear Load Case may continue from the state at the end of another nonlinear case.
- Sequence of Analysis: A linear Load Cases may use the stiffness of the structure as computed at the end of a nonlinear case.
- A Load Case which depends upon an other case is called dependent. The case upon which it depends is called a prerequisite case.


Load Functions

- A Function is a series of digitized abscissa- ordinate pairs that may represent:
 - Pseudo- spectral acceleration vs. period for response-spectrum analysis, or
 - Load vs. time for time-history analysis
 - Load vs. frequency for steady-state analysis
 - Power density (load squared per frequency) vs. frequency for power-spectral-density analysis

Load Combinations

- Five types of Combos are available. For each individual response quantity (force, stress, or displacement component) the two Combo values are calculated as follows:
 - Additive type: The Combo maximum is an algebraic linear combination of the maximum values for each of the contributing cases. Similarly, Combo minimum is an algebraic linear combination of the minimum values for each of the contributing cases.
 - Absolute type: The Combo maximum is the sum of the larger absolute values for each of the contributing cases.
 The Combo minimum is the negative of the Combo maximum.
 - SRSS type: The Combo maximum is the square root of the sum of the squares of the larger absolute values for each of the contributing cases. The Combo minimum is the negative of the Combo maximum.
 - Range type: The Combo maximum is the sum of the positive maximum values for each of the contributing cases (a case with a negative maximum does not contribute.) Similarly, the Combo minimum is the sum of the negative minimum values for each of the contributing cases (a case with a positive minimum does not contribute.)
 - Envelope type: The Combo maximum is the maximum of all of the maximum values for each of the contributing cases. Similarly, Combo minimum is the minimum of all of the minimum values for each of the contributing cases.

Finite Element Modeling, Analysis and Design Process

Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)

Linear Elastic Load Cases

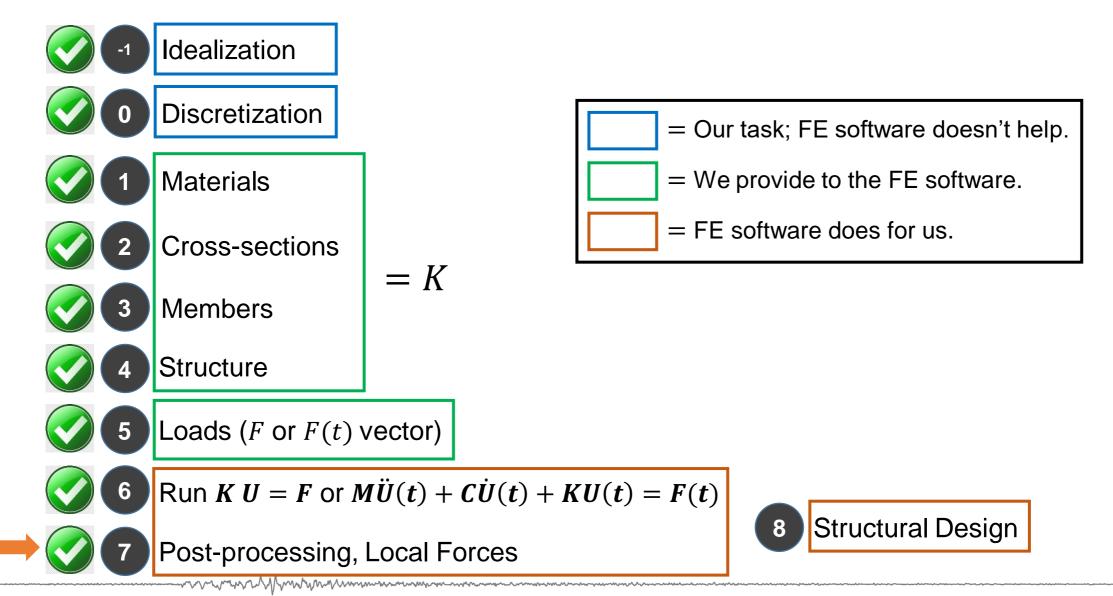
• The results of linear analyses may be **superposed**, i.e., added together after analysis.

- The available types of linear analysis are:
 - Static analysis
 - Modal analysis for vibration modes, using eigen vectors or Ritz vectors
 - Response-spectrum analysis for seismic response
 - Time- history dynamic response analysis
 - Buckling-mode analysis
 - Moving-load analysis for bridge and other vehicle live loads
 - Steady-state analysis
 - Power-spectral-density analysis

Nonlinear Load Cases

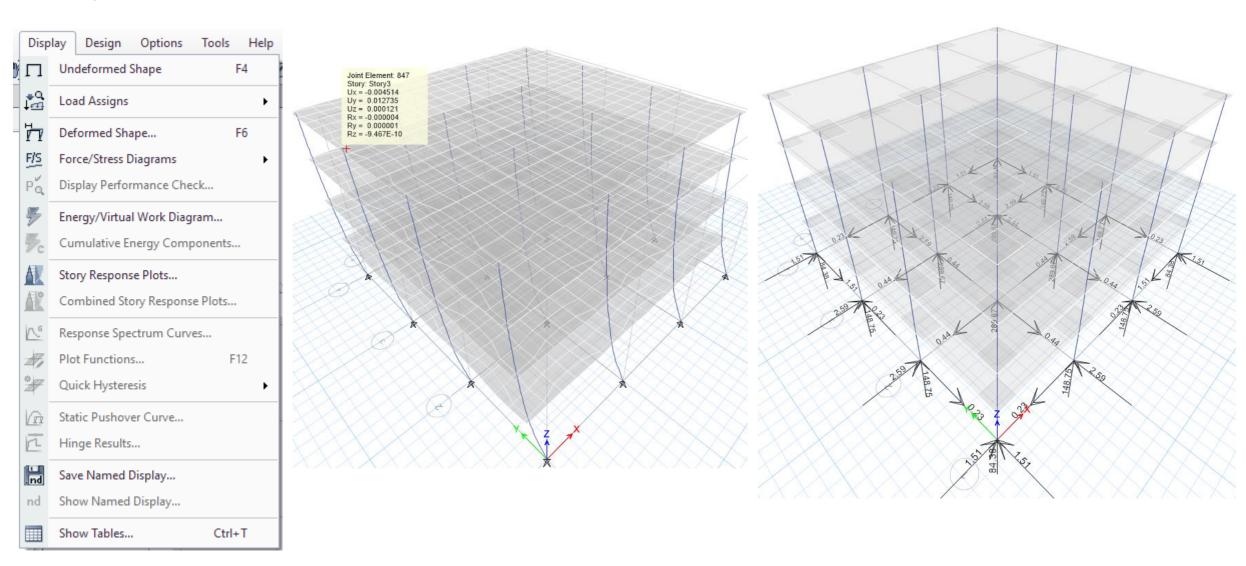
- The results of nonlinear analyses **should not normally be superposed**.
- Instead, all loads acting together on the structure should be combined directly within the Load Cases.
- Nonlinear Load Cases may be chained together to represent complex loading sequences.

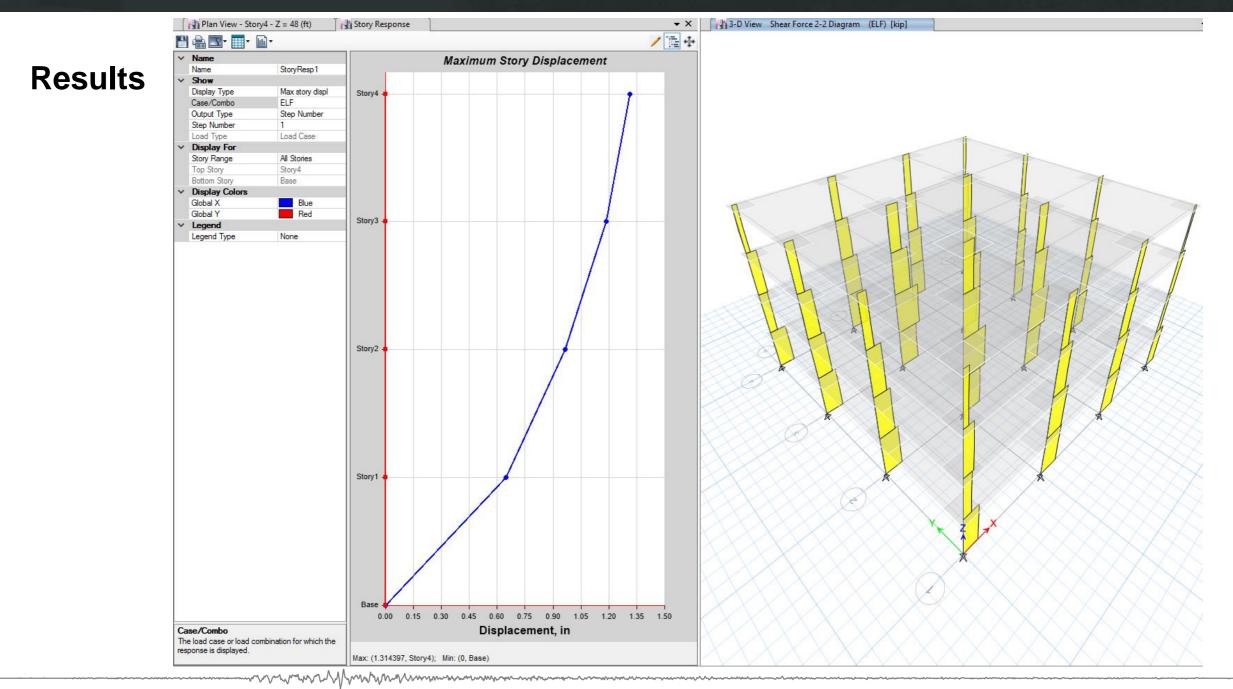
- The available types of nonlinear analyses are:
 - Nonlinear static analysis
 - Nonlinear time-history analysis

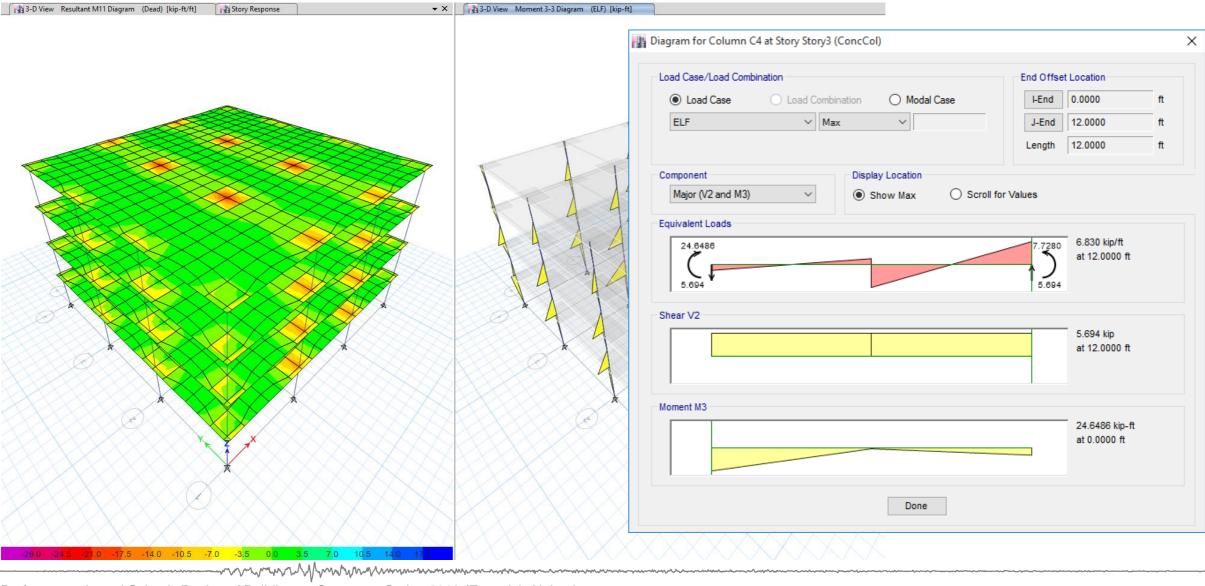

Check Model	× Ana	alyze Display	De
Length Tolerance for Checks	•	Check Model	
Length Tolerance 0.1 in	×	Set Active Degr	ees
Length Tolerance for Checks 0.1 in		Set Load Cases	
Joint Checks			
Joints/Joints within Tolerance		Advanced SAPF	ire
Joints/Frames within Tolerance	2	Automatic Mes	h S
Joints/Shells within Tolerance	1	Automatic Rect	and
Frame Checks	A	Analysis Model	
Frame Overlaps	•	Analysis Woder	101
Frame Intersections within Tolerance	A	Cracking Analys	sis (
Frame Intersections with Area Edges		Run Analysis	
Shell Checks	(i)	Model Alive	
Shell Overlaps	<u> </u>	Ma differ Undefer	
Other Checks		Modify Undefor	me
Check Meshing for All Stories	LOG	Last Analysis Ru	ın L
Check Loading for All Stories	6	Lock Model	
Check for Duplicate Self Mass		LOCK MODEL	1
Fix	- A - A	Advanced SapFire	Opt
Trim or Extend Frames and Move Joints to Fix Problems		Calvas Oations	
Joint Story Assignment		Solver Options	
		Standard So	lve
Check Selected Objects Only		Advanced S	olv
Select/Deselect All		O Multi-threade	ed S
OK Cancel			
			L

ay Design Options Tools Help	Analysis Model for Nonlinear Hinges	×
del		
Degrees of Freedom	O Model Hinges Within Elements	
ases To Run	Model Hinges as Separate Link Elements (Permits FNA)	
SAPFire Options	Stiffness-proportional Damping for Hinges in Link Elements	
Mesh Settings for Floors	Proportional to Initial Stiffness (K0)	
Rectangular Mesh Settings for Walls	Proportional to Tangent Stiffness (KT)	
lodel for Nonlinear Hinges	○ Mixed: F0 * K0 + (1 - F0) * KT	
analysis Options	Fraction of Initial Stiffness, F0	
sis F5		
re	OK Cancel	
deformed Geometry		
sis Run Log		
el	Active Degrees of Freedom	
Fire Options	Building Active Degrees of Freedom	
	Full 3D XZ Plane YZ Plane No	Z Rotation
Analysis Process Options		71
ced Solver O GUI Process		Π
nreaded Solver O Separate Process		RZ
OK Cancel	OK Cancel	

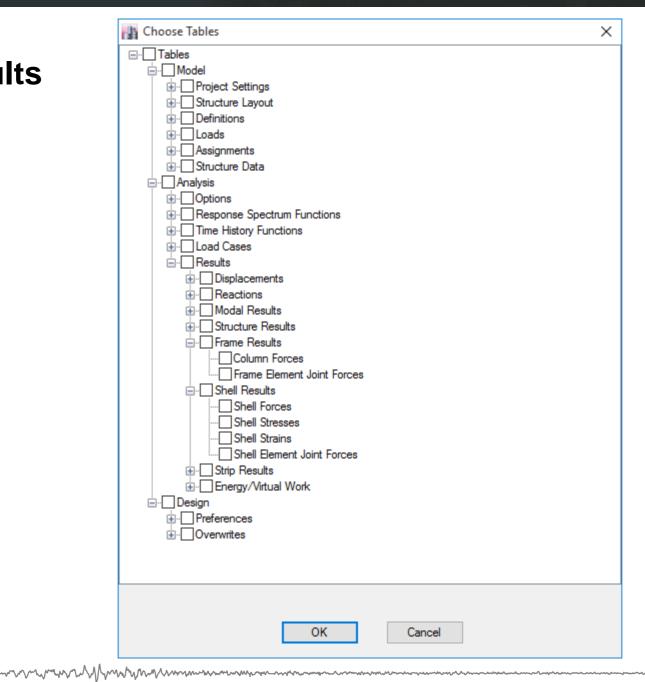
s Model for Nonlinear Hinges	×
Model Hinges Within Elements	
Model Hinges as Separate Link Elements (Permits FNA)	
ss-proportional Damping for Hinges in Link Elements	
Proportional to Initial Stiffness (K0) Proportional to Tangent Stiffness (KT)	
Mixed: F0 * K0 + (1 - F0) * KT	
Fraction of Initial Stiffness, F0	
OK	
Active Degrees of Freedom	
Building Active Degrees of Freedom	
Full 3D XZ Plane YZ Plane No	Z Rotation
	Ħ


 \times


Finite Element Modeling, Analysis and Design Process

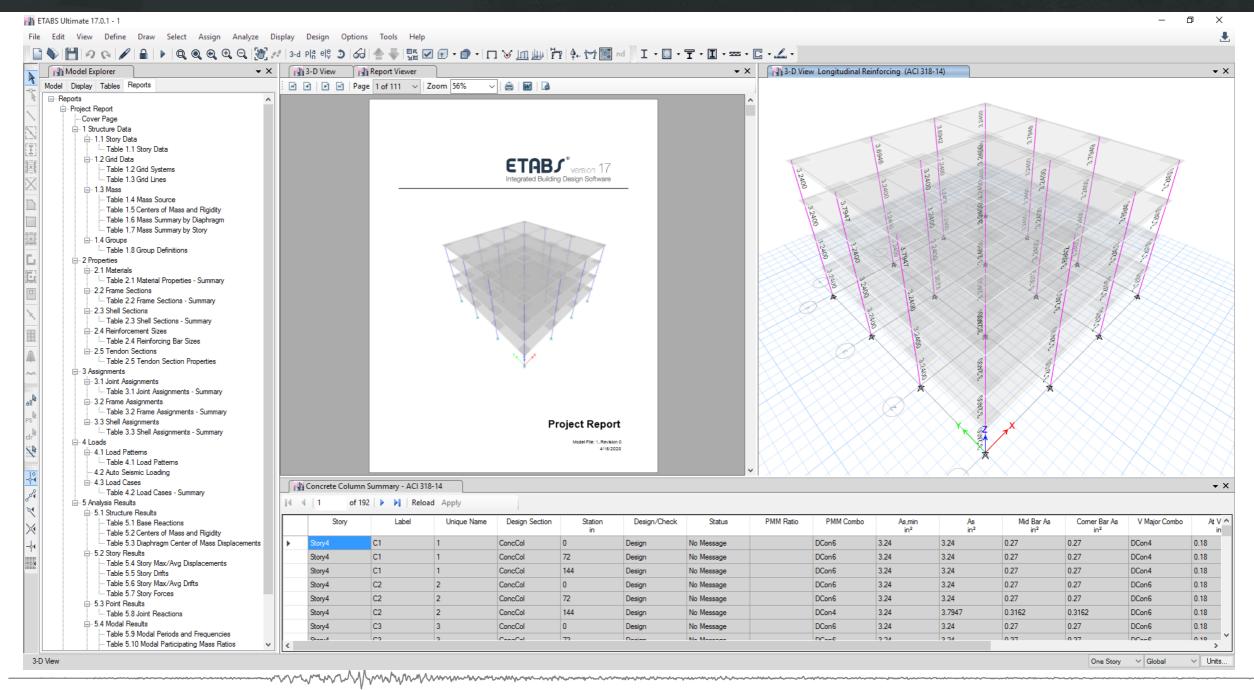

Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)

Analysis Results



Analysis Results

Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)


Analysis Results

Performance-based Seismic Design of Buildings – Semester: Spring 2018 (Fawad A. Najam)

Structural Design

Design Options Tools Help				
I	Steel Frame Design	- r	ב - 🗵 🕅 אין 🖓 🐥 😭 🔤 nd 📗 ב - 🖸	
	Concrete Frame Design	P	View/Revise Preferences	
ī	Composite Beam Design	P	Rebar Selection Rules for Columns	
I	Composite Column Design	P	Rebar Selection Rules for Beams	
~~~	Steel Joist Design		View/Revise Overwrites	
***-c0	Overwrite Frame Design Procedure	R	Select Design Groups	
C	Shear Wall Design	$\Box_{c}^{\nu}$	Select Design Combinations	
-	Concrete Slab Design		Start Design/Check Shift+F6	
LLRF	Live Load Reduction Factors	$\square$	Interactive Design	
₩ā,	Set Lateral Displacement Targets		Display Design Info Shift+Ctrl+F6	
0.15	Set Time Period Targets	א 🗉 🛛	Change Design Section	
		R	Reset Design Section to Last Analysis	
		RI	Verify Analysis vs Design Section	
		D,	Verify All Members Passed	
		<b>C</b> ⁵	Reset All Overwrites	
Ŕ		₽.	Delete Design Results	
Z		$\leq$	$\times$	



# Thank you