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Lecture 3: A Quick Overview of Structural Dynamics

• Dynamics of Simple Structures

• Dynamics of Discrete MDF Structures 
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Structural Dynamics
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Equations of Motion
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The Basic Problem of Structural Dynamics



Simple Structures: Structures that can be idealized as concentrated mas “𝑚” supported by 

a massless structure with stiffness “𝑘” in lateral direction



The viscous damping element is added here to model the energy dissipation in the structural

system which is caused by various mechanisms, such as thermal effect of repeated elastic

straining of material , friction at steel connections, opening and closing of micro cracks in

concrete, friction between the structure itself and nonstructural elements, energy radiation by

waves form the foundation, etc.

These simple structures are sometimes called “Single degree of freedom structures” (SDOF

structures) because the displaced positions of overall structural body relative to their original

position can be defined by one independent displacement [for example, the lateral

displacement of the original mass in the case (a)].



Equation of Motion Considering dynamic forces that are acting on the vibrating mass “𝑚”:

𝑝 𝑡 : external force

𝑓𝑠 𝑡 : elastic restoring force

𝑓𝑠 𝑡 = 𝑘 𝑢 𝑡

where 𝑘 is the lateral stiffness of the structures

𝑢 𝑡

𝑝 𝑡

𝑓𝑑 𝑡 : damping force

(1)

𝑓𝑑 𝑡 = 𝑐 ሶ𝑢 𝑡 (2)

𝑐 is the viscous damping coefficient



Using Newton’s second law of motion, we obtain:

𝑝 𝑡 − 𝑓𝑠 𝑡 − 𝑓𝑑 𝑡 = 𝑚 ሷ𝑢 𝑡 (3)

or 𝑚 ሷ𝑢 + 𝑐 ሶ𝑢 + 𝑘 𝑢 = 𝑝 𝑡 (4)

This equation is the equation of motion governing the deformation 𝑢 𝑡 of the idealized structure.



Earthquake Excitation

𝑢𝑔 𝑡

ground displacement

𝑢 𝑡

Structural deformation

(The displacement of structure relative to the ground)

Initial configuration



Using the Newton’s second law of motion, we obtain:

0 − 𝑓𝑠 𝑡 − 𝑓𝑑 𝑡 = 𝑚 ሷ𝑢𝑡 𝑡 (5)

In which 

𝑢𝑡 𝑡 : the total (or absolute) displacement of the mass “𝑚”

𝑢𝑡 𝑡 = 𝑢𝑔 𝑡 + 𝑢 𝑡

and

𝑓𝑠 𝑡 = 𝑘 𝑢 𝑡

𝑓𝑑 𝑡 = 𝑐 ሶ𝑢 𝑡

(6 a,b,c)



Substituting Eqs. (6) in Eq. (5) gives :

𝑚 ሷ𝑢 + 𝑐 ሶ𝑢 + 𝑘 𝑢 = −𝑚 ሷ𝑢𝑔(𝑡)
(7)

Eq. (7) says that

Identical

deformation 𝑢 𝑡

Stationary base     Moving base     

𝑢 𝑡

ሷ𝑢𝑔 𝑡

𝑝𝑒𝑓𝑓 𝑡 = −𝑚 ሷ𝑢𝑔 𝑡
𝑢 𝑡
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Dynamics of Simple Structures
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Dynamics of Simple Structures



Undamped Free Vibration

Suppose that the structure has no damping (an ideal case) and its motion is initiated by distributing 

the system from its static equilibrium position such that 𝑢 0 and ሶ𝑢 0 are non-zero.

(𝑢 0 and ሶ𝑢 0 describe the conditions of the structure at the time zero; they are called “initial 

conditions”)

It can be shown that

𝑢 𝑡 = 𝑢 0 𝑐𝑜𝑠 𝜔𝑛𝑡 +
ሶ𝑢 0

𝜔𝑛
𝑠𝑖𝑛𝜔𝑛𝑡

(8)

where 𝜔𝑛 =
𝑘

𝑚
(9)(𝑟𝑎𝑑/sec)



In terms of mathematics 𝑢 𝑡 of Eq. 8 is the solution of the second order differential equation:

𝑚 ሷ𝑢 + 𝑘 𝑢 = 0 (10)

and the solution is also satisfying the prescribing initial conditions 𝑢 0 and ሶ𝑢 0 .

This can be easily checked by substituting the expression of 𝑢 𝑡 in Eq. (8) to the L.H.S of Eq. (10). 

You will see that all terms are cancelled out and the final result is equal to the R.H.S of Eq. (10) – “0”).



Free vibration of a system without damping

The natural vibration properties 𝜔𝑛, Τ𝑛 and 𝑓𝑛 depend only on the mass and stiffness of the structure.

Τ𝑛: The natural period of vibration (sec)

𝜔𝑛: The natural circular frequency (rad/sec)

𝑢0 = 𝑢(0)2+
ሶ𝑢(0)

𝜔𝑛

2



The natural (cyclic) frequency 

𝑓𝑛 =
1

Τ𝑛
=

𝜔𝑛

2𝜋
ൗ𝑐𝑦𝑐𝑙𝑒
𝑠𝑒𝑐 (𝐻𝑧)

The natural vibration properties 𝜔𝑛, Τ𝑛 and 𝑓𝑛 depend only on the mass and stiffness of

the structure.

Therefore, these properties are the natural properties of the structure.



The natural frequency and period of various structures vary over a wide range:
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Damped Free Vibration

In this case, damping is present in the structure – a more realistic case

Equation of Motion: 𝑚 ሷ𝑢 + 𝑐 ሶ𝑢 + 𝑘 𝑢 = 0 (11)

or ሷ𝑢 + 2𝜉𝜔𝑛 ሶ𝑢 + 𝜔𝑛
2 𝑢 = 0 (12)

𝜉 =
𝑐

2𝑚𝜔𝑛
=

𝑐

𝑐𝑟
where The damping ratio (of critical damping)

𝑐𝑟 is the critical damping coefficient 

𝑐𝑟 = 2 𝑘𝑚 = 2𝑚𝜔𝑛

*most structures have the value of 𝜉 less than 0.2

(13)



Initial Conditions:

Suppose that the values of 𝑢 0 and ሶ𝑢 0 have been given.

Solution:

The solution of Eq. (12) and its associated initial conditions for 𝜉 < 1 is given by:

𝑢 𝑡 = 𝑒−𝜉𝜔𝑛𝑡( 𝐴 𝑐𝑜𝑠 𝜔𝐷𝑡 + 𝐵 𝑠𝑖𝑛 𝜔𝐷𝑡)

where 𝐴 = 𝑢 0 ,

𝐵 =
ሶ𝑢 0 + 𝜉𝜔𝑛𝑢 0

𝜔𝐷
,

(14)

(15a,b)

𝜔𝐷 = 𝜔𝑛 1 − 𝜉2and (16)



Using equation (16), it can be shown that 𝜔𝐷 ≈ 𝜔𝑛 for most structures, which have

“𝜉” less than 0.2.

Equation (14) can be presented in another form:

𝑢 𝑡 = 𝑒−𝜉𝜔𝑛𝑡𝜌 𝑐𝑜𝑠(𝜔𝐷𝑡 − 𝜃) (17)

where 𝜌 = 𝐴2 + 𝐵2

𝜃 = 𝑡𝑎𝑛−1 ൗ𝐵 𝐴

(18a,b)



Effect of Damping on Free Vibration

𝑇𝐷 = ൗ2𝜋
𝜔𝐷



Free Vibration of Systems with Four Levels of Damping: 𝜉 = 0.02, 0.05, 0.1, 0.2



Response to Harmonic Excitation

Equation of motion: 𝑚 ሷ𝑢 + 𝑐 ሶ𝑢 + 𝑘 𝑢 = 𝑝0 𝑠𝑖𝑛𝜔𝑡 (19)

Initial conditions: 𝑢 0 and ሶ𝑢 0

𝑝 𝑡 = 𝑝0 𝑠𝑖𝑛𝜔𝑡



The solution of Eq. (19) and its associated (given) initial conditions is:

𝑢 𝑡 = 𝑒−𝜉𝜔𝑛𝑡 𝜌 cos 𝜔𝐷𝑡 − 𝜃 +
𝑝0
𝑘

𝑅𝑑 sin 𝜔𝑡 − 𝜙 (20)

where 𝑝0

𝑘
is the maximum value of the static response of the harmonic force 𝑝0 𝑠𝑖𝑛𝜔𝑡; 

the value is denoted by "𝑈𝑠𝑡”

𝑅𝑑 is the dynamic response factor,

𝑅𝑑 =
1

{1 − (
𝜔
𝜔𝑛

)2}2 + {2 𝜉
𝜔
𝜔𝑛

}2
(21)



𝜙 = 𝑡𝑎𝑛−1
2 𝜉

𝜔
𝜔𝑛

1 − (
𝜔
𝜔𝑛

)2
(22)

The constants 𝜌 and 𝜃 are determined such that the given initial conditions 

𝑢 0 and ሶ𝑢 0 are satisfied.



The transient response decays exponentially with time.

So, the total response, as time goes on, approaches

the steady-state response. However, the largest

deformation peak may occur before the system has

reached steady state.

Response of a damped system to harmonic force; 
𝜔

𝜔𝑛
= 0.2, 𝜉 = 0.05, 𝑢 0 = 0, ሶ𝑢 0 = 𝜔𝑛 Τ𝑝𝑜 𝑘

ൗ𝑢 𝑡
𝑢𝑠𝑡

𝑇 = ൗ2𝜋
𝜔



Dynamic Response Factor and Phase Angle for Damped Systems Excited by Harmonic Force

= ൗ
𝑢𝑚𝑎𝑥

𝑢𝑠𝑡

𝑅𝑑

𝜔

𝜔𝑛

1

2𝜉



Dynamic Response Factor and Phase Angle for Damped Systems Excited by Harmonic Force



Though the dynamic response factor at 𝜔 ≈ 𝜔𝑛 is very large for a system with low damping,

a very long time period is needed before the deformation amplitude reaches the steady state.

The amplitude has to build up gradually cycle by cycle as shown by the figure below:

Response of a damped system 𝜉 = 0.05 to sinusoidal 

force of frequency ω = 𝜔𝑛; 𝑢 0 = ሶ𝑢 0 = 0ൗ𝑢 𝑡
𝑢𝑠𝑡



The number of cycles required to reach 95% of steady state amplitude is:

10 (cycles) for 𝑅𝑑 = 10 (𝜉 = 0.05)

24 (cycles) for 𝑅𝑑 = 25 (𝜉 = 0.02)

48 (cycles) for 𝑅𝑑 = 50 (𝜉 = 0.01)



Response to Harmonic Ground Motion

Effective Force of Harmonic Ground Motion:

𝑝 𝑡 = −𝑚 ሷ𝑢𝑔 𝑡 = 𝑚𝜔2𝑢𝑔0 𝑠𝑖𝑛𝜔𝑡 (23)

The force 𝑝 𝑡 can be treated as a harmonic force, hence:

Identical

deformation 𝑢 𝑡

Stationary base     

𝑢 𝑡 𝑢 𝑡𝑝 𝑡 = −𝑚 ሷ𝑢𝑔 𝑡

𝑢𝑔 𝑡 = 𝑢𝑔0 𝑠𝑖𝑛𝜔𝑡



𝑢 𝑡 at steady state =   
𝑝0

𝑘
𝑅𝑑 𝑠𝑖𝑛 𝜔𝑡 − 𝜙

𝑢 𝑡 at steady state = (
𝜔

𝜔𝑛
)2 𝑅𝑑 𝑢𝑔0 𝑠𝑖𝑛 𝜔𝑡 − 𝜙

=   
𝑚𝜔2 𝑢𝑔0

𝑚𝜔𝑛
2 𝑅𝑑 𝑠𝑖𝑛 𝜔𝑡 − 𝜙

(24)∴



൘
𝑈𝑚𝑎𝑥

𝑈𝑔𝑜

𝜔

𝜔𝑛

2

𝑅𝑑

or

𝜙 = 0



Response to Half-Cycle Sine Pulse Force

Equation of motion:

𝑚 ሷ𝑢 + 𝑐 ሶ𝑢 + 𝑘𝑢 = ൞
𝑝0 𝑠𝑖𝑛 ൗ𝜋𝑡

𝑡𝑑

0

𝑡 ≤ 𝑡𝑑

𝑡 > 𝑡𝑑

(25)

Initial Conditions:

𝑢 0 𝑎𝑛𝑑 ሶ𝑢 0 = 0 at rest condition 

Solution: see figures in the next slide



Dynamic responses of undamped SDOF systems to half-cycle sine pulse force; Static responses are shown by dashed lines

• The normalized deformation ൗ𝑈 𝑡
𝑈𝑠𝑡 is a function of 

ൗ𝑡 𝑇𝑛.  The characteristics of the function depend on 

ൗ𝑡𝑑
𝑇𝑛 −the ratio of the pulse duration to the natural 

vibration period of the system.

• Since the response has not yet reached its steady 

state, the dynamic response factor is not as high as 

that of steady-state response to harmonic excitation.

• The dynamic response factor,  ൗ𝑈𝑚𝑎𝑥
𝑈𝑠𝑡, is a 

function of ൗ𝑡𝑑
𝑇𝑛



Shock spectra for a half-cycle sine pulse force for five damping values

𝑅𝑑 = ൗ
𝑈𝑚𝑎𝑥

𝑈𝑠𝑡

ൗ
𝑡𝑑

𝑇𝑛



• A plot which shows the maximum deformation of a SDOF system as a function of the 

natural period 𝑇𝑛 of the system (or related parameter such as ൗ𝑡𝑑
𝑇𝑛, for example) is called 

a ‘response spectrum’.

• When the excitation is a single pulse, the terminology ‘shock spectrum’ is also used for 

the response spectrum.

• The effect of damping on the maximum response is usually not important unless the 

system is highly damped.  This is different from the case of steady-state response of 

systems of harmonic excitation at or near resonance, where damping has significant 

influence.

• Increase in damping ratio from 1% to 10% reduces the maximum deformation by 

only 12%.
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Dynamics of SDF Systems



Response to Arbitrary Force

Equation of motion: 𝑚 ሷ𝑢 + 𝑐 ሶ𝑢 + 𝑘 𝑢 = 𝑝 𝑡 (26)

A force varying arbitrary with time

Initial Conditions: 𝑢 0 𝑎𝑛𝑑 ሶ𝑢 0 = 0 at rest initial condition

Solution: 𝑢 𝑡 = න

0

𝑡

𝑝 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

The convolution Integral

(27)



where

ℎ 𝑡 − 𝜏 is the response of the SDOF system to a unit impulse which occurs at time 𝑡 = 𝜏 , so

ℎ 𝑡 − 𝜏 = ቐ

1

𝑚𝜔𝐷
𝑒−𝜉 𝜔𝑛(𝑡−𝜏) 𝑠𝑖𝑛[𝜔𝐷(𝑡 − 𝜏)]

0

𝑡 ≥ 𝜏

𝑡 < 𝜏

ℎ 𝑡 − 𝜏 is called “unit impulse response function”

(28)



a unit impulse at 𝑡 = 𝜏

න

𝜏

𝜏+𝜀

𝑝 𝑡 𝑑𝑡 = 1 and 𝜀 is very small, that is, 𝜀 → 0

Response to the unit impulse

= Free Vibration with 𝑢 𝜏 = 0 and ሶ𝑢 𝜏 = Τ1 𝑚

Impulse = change in 

momentum, so

1 = 𝑚 ሶ𝑢 𝜏 −𝑚 × 0



Schematic Explanation of Convolution Integral 

any arbitrary force can be represented as a 

sequence of infinitesimally short impulses.

Response of a SDOF system to one of these short impulses –

the one at time 𝜏

𝑑𝑢 𝑡 = 𝑝 𝜏 𝑑𝜏 ℎ(𝑡 − 𝜏)

Impulse x Unit impulse response



⋮

⋮

The response of the SDOF system at a time 𝑡 is the sum of 

the response to all impulses from time zero to time 𝑡

𝑢 𝑡 = න

0

𝜏

𝑝 𝜏 𝑑𝜏 ℎ(𝑡 − 𝜏) 𝑢 𝑡 = න

0

𝜏

𝑝 𝜏 ℎ(𝑡 − 𝜏)𝑑𝜏

Schematic Explanation of Convolution Integral 



The convolution integral is restricted to linear systems because it is based on the principle of

superposition. Therefore, it does not apply to the cases where structural deformations

exceed their linearity elastic limit.



Ground Motion Accelerogram

This basic instrument to record three components of ground shaking (up-down, N-S, E-W)

during earthquakes is the strong-motion accelerograph which does not record

continuously but is triggered into motion by the first waves of the earthquake to arrive.

For engineering purposes, the time variation of ground acceleration ሷ𝑢𝑔 𝑡 is the most

useful way of defining the shaking of the ground during an earthquake.

𝑃𝑒𝑓𝑓 𝑡 = −𝑚 ሷ𝑢𝑔 𝑡This is because 

















Ground motions recorded during several earthquakes:

-highly irregular

-wide variety of amplitude, duration, frequency content and general appearance of different 

records can be clearly seen.
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Dynamics of MDF Systems
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Modal Analysis for Forced Vibrations Response (Mode-superposition method)



Thank you


