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Chapter 1
Basic Seismology

1.1. What is an Earthquake?

» Shaking and vibration at the surface of the earth resulting from underground movement
along a fault plane or from volcanic activity

» An earthquake is the result of a sudden release of energy in the Earth's crust that creates
seismic waves

» An earthquake is a sudden and sometimes catastrophic movement of a part of the Earth's
surface.

1.2. Types of Earthquakes

» EQs can be classified by their mode of generation as follows:
* Tectonic Earthquakes
o The most common earthquakes

o Produced when rocks break suddenly in response to the various geological
(tectonic) forces

* Volcanic Earthquakes
o EQs that occurs in conjunction with volcanic activity
o EQs induced by the movement (injection or withdrawal) of magma
» Collapse Earthquakes
o Small EQs occurring in regions of underground caverns and mines
o Caused by the collapse of the roof of the mine or caverns
o Sometimes produced by massive land sliding
* Human cause explosion earthquakes

o Produced by the explosion of chemical or nuclear devices

1.3. The Causes of Earthquakes

In 1891, a Japanese seismologist, Prof. B. Koto, after careful study of the Mino-Owari earthquake
noted,



“It can be confidently asserted that the sudden faulting was the actual cause (and not the effect)
of the earthquake.”

This finding was the start of common acceptance that fractures and faults were the actual
mechanism of the earthquake and not its results, and was the basis of the development of the
seismology.
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In ancient Japanese folklore, a giant catfish (Namazu) lives in the mud beneath the earth. It is
guarded by the god Kashima who restrains the fish with a stone. When Kashima let his guard
fall, Namazu thrashes its body, causing violent earthquakes.
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Ground Failure by Lateral Fault Movement
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Surface rupture caused by Fault dislocation

* Shortly after the San Francisco earthquake of 1906, an American geologist, Harry Fielding
Reid, investigated the geological aftermath.

* He noticed that a displacement of nearly 6 meters had occurred on certain parts of the
San Andreas Fault which runs under San Francisco, and he proposed the theory that
strain had been building up over a long period of time and suddenly released in the EQ.

“It is impossible for rock to rupture without first being subjected to elastic strains greater than it
can endure. We concluded that the crust in many parts of the earth is being slowly displaced,
and the difference between the displacements in neighboring regions set up elastic strains, which

Basic Seismology 4



may become larger than the rock can endure. A rupture then take place, and the strained rock
rebounds under its own elastic stresses, until the strain is largely or wholly relieved.

When a fault ruptures, the elastic energy stored in the rock is released, partly as heat and partly
as elastic waves.

In the majority of cases, the elastic rebound on opposite sides of the fault are in opposite
directions.

This is known as the elastic rebound theory.

1.4. Types of Faults

Four Basic Types of Faults

Fault: Afaultis a fracture along which the blocks of
crust on either side have moved relative to one
another parallel to the fracture.

<+————  Tensional stress
(a) Normal fault (tension) Right-lateral* Left-lateral**

Compressional stress (c) Strike-slip fault (lateral shearing)

(b) Thrust or reverse fault (compression)

Dip Slip (normal or thrust) Strike Slip (right or left lateral)

Strike-slip faults are vertical (or nearly vertical) fractures where the blocks have mostly moved
horizontally. If the block opposite an observer looking across the fault moves to the right, the slip
style is termed right lateral; if the block moves to the left, the motion is termed left lateral.

Dip-slip faults are inclined fractures where the blocks have mostly shifted vertically. If the rock
mass above an inclined fault moves down, the fault is termed normal, whereas if the rock above
the fault moves up, the fault is termed reverse (or thrust). Oblique-slip faults have significant
components of both slip styles.

Oblique-slip faults: Oblique-slip faulting suggests both dip-slip faulting and strike-slip faulting. It is
caused by a combination of shearing and tension or compressional forces, e.g., left-lateral normal
fault.
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1.5. Earthquake Rupture

The rupture begins at the earthquake focus within the crustal rock and then spreads outward in

all directions in the fault plane.

The boundary of the rupture does not spread out uniformly. Its progress is jerky and irregular
because crustal rocks vary in their physical properties and overburden pressure from place to

place.

If this rupture reaches the surface (as happens in a minority of shallow earthquakes), it produces

a visible fault trace.

After shocks always spread along the fault line. So we can see the extent of rupture by checking

the distribution of aftershocks.

Surface fault trace

Fault plane

Figure 6.6 Side view into the Earth’s crust showing rupture of the rocks spreading out
from the focus of the earthquake along the dipping fault plane. Two stages of the
rupture are shown. The arrows indicate the direction of the spreading rupture. (The
epicenter is the point on the Earth’s surface directly above the focus.) [From Bruce A.
Bolt, Nuclear Explosions and Earthquakes: The Parted Veil (San Francisco: W. H. Freeman
and Company, Copyright © 1976).]
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Wave front Fault

Total Slip in the M7.3 Landers Earthquake
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Surface Rupture: Strike-slip Fault Example Surface Rupture: Normal Fault Example

Dixie Valley-Fairview Peaks, Nevada earthquake. December 16, 1954
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Surface Rupture: Thrust Fault Example

Strong ground shaking above the rupture zone

N-sh(- ku

akashi Ci

Tarumi-ku

Map shows the concentration of deaths above the active fault in souther Hyoo Prefecture.

The 1995 Kobe Earthquake

Deaths distribution and fault  racaze City

- Death Kita-ku

MR Faur

Nada-ku
Higashi-
nada-ku

@ e

Destruction centered above active fault

The deaths caused by the Great Han-
shin Earthquake were concentrated along
the 25-kilometer-long, three-kilometer-
wide coastal zone between Suma-ku,
Kobe City, and Nishinomiya City — just
above an active fault; a seismologist has
found.

Associate Professor Toshihiko Shima-

after conducting a detailed survey of the
quake-devastated areas. He also learped
that the active faualt shifted largely during
the quake. :
Damage from an earthquake, when it
hits urban areas from directly below,
tends to concentrate in areas just above
the aclive fault that triggers the quake. A
RER

A Ve nnimbac Af tha vietimc

crushed to death under collapsed build
ings located above the fault.

“The Kinki area has a concentration o
active faults. But if you try to avoic
active faults, you can’t find a place
build,” says Shimamoto. “You have n
choice but to be fully aware of the dan
ger of such faults and promote the con
<trnction of disaster-oroof towns.” h
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Hankyu, Hanshin,
and JR rail lines
Extensive roadbed,
rolling stock, and
station damage
over 20 km Shinkansen
Collapsed spans
east of tunnel
Hanshin entrance for 3 km
Expressway -
Multiple
collapsed spans
over 20 km

Heavy fire

damage Sannomiya
Many houses collapsed,
Collapsed several conflagrations,
buildings general damage

Collapsed
roads, train
derailment
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Extensive ROKKD ISLAND
liquefaction = PORT

Densly . ) SLAND Osaka . Bay

populated Extensive liquefaction,
area collapsed seawalls, Wangan (Harbor)
leaning cranes x Expressway
. 5 Varying damage to
‘1}( . steel spans, beam seats,
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M72 - : i ’ 2
o 15
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' Kilometers

The 1995 Kobe Earthquake

Epicenter (MA)
'.- Aftershocks
Active fault
Recorded Accelerations
B 0530 r

W 0539

Iso-acceleration
contours

The distance from your site to ruptre plane is more important than distance from site to epicenter.
May be the rupture propagated towards your site.

Size of rupture is not predictable. Depends on the initial stress and rock type, which vary from
place to place.
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= A Major Disaster
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1.6. Continental Drift
In 1910 a German meteorologist and astronomer, Alfred Wegener, put forward a theory:

At about 200 million years ago, the earth consisted of only one continent, which he called Pangaea
(all lands), and one ocean, Panthalassa (all seas). Eventually, for reasons which Wegener could
not explain, this mass of land broke up in mesozoic times—about 150 million years ago—and
started to move; firstly into N-S devisions, and then into E-W ones.

He called the process continental drift.

Diagrams illustrating Wegener’s
theory of continental drift.

1 270 million years ago, the continents
were united in a single block called
Pangaea.

_ 2 150 million years ago, Pangaea

started to divide. North America and
Europe were still united. It is now
believed that North and South
America were apart at this stage.

3 1 million years ago, the continents
were beginning to assume the shapes
and positions we know today.

Initially the Wegener theory was too fanciful for many, and at the existing level of scientific
knowledge it could not be proved.

Wegener was roundly condemned.

After the discovery of submarine mountain ranges and many more evidence in later years, the
Wegener theory became a widely accepted theory.

This was also the starting point of the theory of plate tectonics.

Basic Seismology 14



The impact of the theories of plate tectonics and continental drift was immense and was the great
breakthrough that the earth sciences had needed for so long.

1.7. Plate Tectonics

The basic idea of “plate tectonics” is that the earth’s outer shell (called the lithosphere) consists
of several large and fairly stable slabs of solid rock called plates.

The basic idea of “plate tectonics” is that the Earth’s outer shell
(called the lithosphere) consists of several large and fairly stable slabs
of solid rock called plates.

The thickness of each plate extends to a depth of about 80 km; the
plate moves horizontally, relative to neighboring plates, on a layer of
softer rock immediately below.

The rate of movement ranges from a centimeter to ten centimeters
per year.

At the plate edges where there is contact with adjoining plates,
boundary tectonic forces act on the rock causing physical and
chemical changes in them. This is where the massive and radical
geological changes (ingluding earthquakes) occur.

s
New lithosphere is created at mid-ocean ridges by the upwelling and
cooling of magma (molten rock) from the Earth’s mantle. In order to
conserve mass, the horizontally moving plates are believed to be
absorbed at the ocean trenches where a subduction process carries the
lithosphere downward into the Earth’s interior.

De/pewiivg v pon wnmgwcz yode, Some  cobdochom
2onet  (an ke wove achive than  ofher(.
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This general geological theory has a number of implications for our
understanding of earthquakes.

First, many more earthquakes will oceur along the edges of the
interacting plates (interplate earthquakes) than within the plate
boundaries (intraplate earthquakes).

Second, because the directions of forces on plates vary across them, the
mechanism of the sources of earthquakes and their size differ in
different parts of a plate.

Only about 10 percent of the world’s earthquake occur along the ocean-

ridge system. In contrast, earthquakes occurring where plate

boundaries converge, such as at trenches, contribute about 90 percent.
L‘;‘:*-_

Third, the grand scale of the plate pattern and the steady rate of plate
spreading imply that along a plate edge the slip should, on average, bea
constant value over many years.

This idea suggests that the historical patterns of distance and time
intervals between major earthquakes along major plate boundaries
provide at least crude indication of places at which large earthquakes
might occur.
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1.8. Internal Structure of the Earth

Mid-Atlantic Ridge

Andes Mountains

Ocean
trench

Indian
Ocear
\ floor

The thickness of each plate is about 80 km. The plate moves horizontally, relative to neighboring
plates, on a layer of softer rock.

Lithosphere
(crust and upper-
most solid mantle)

Crust 0-100 km
thick

Mantle

Not to scale
6378 km

To scale |
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The Internal
Structure of the
Earth

Eurasian Plate

The Crust is fractured into Tectonic
Plates such as the Eurasian

The Mantle, a zone of molten
Silicates and other minerals.

Molten so it moves, the source

of this is the Earth’s intense
inner heat which setsup
convection currents. 2,900km
thick

The Crust — 2 types —

Plate margin — the EDGES of

plates where 2 plates are either

moving apart, colliding together

or sliding past one another Solid core of Iron and Nickel, which
is solid despite temperatures of
3700°C because of the intense
pressure there.

Quter Core — under
slightly less pressure

5 A Tr. :
3 e &5t
3 North American £
L
Plate =
s K. African Plate 5
) (2
°
g8
2 2
55
]
23
= f=1
ok

/ Oceanic (denser, newer,
thinner) and Continental

of the mantle approximately

(older, thicker & less dense)

Asthenosphere - The upper part

80km deep where rocks are kept

in a semi-molten state

Convection currents — heat

currents in the molten magma
that move the crust above very

slowly

Mohorovici¢ or Moho Discontinuity
— the junction between the Earth’s
crust and the mantle where seismic
waves are modified

1.9. Earth’s Tectonic Plates and their Movements

Convergence plate boundary: subduction zone etc.

Divergence plate boundary: Plates diverges at mid-ocean ridges

Transform fault: Plates move laterally each other

Basic Seismology
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Ridge axis Transform Subduction zone Zones of Ext;sion within continents Uncertain plate
divergent boundary Convergent boundary boundary

Tectonic Plates

Earth’s Changing Landscapes

Figure 8-16 Earth’s 14 lithospheric plates and their movements.
Each arrow represents 20 million years of movement, the longer arrows indicating that the Pacific and Nazca plates are moving more
rapidly than the Atlantic plates. [Adapted from U.S. Geodynamics Committee.]
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is “stamped” on the ocean floor.
Alternating stripes then record the
“flips” in the prevailing magnetic
field of the earth which are known to
take place every 100,000 years or so.

Molten magma welling from beneath
the earth’s crust passes through the
central rift and hardens. As the
process continues — as it has continued
for millions of years — the magnetic
“signature” of each léng convulsion

Island arc Mid-ocean ridge
Volcanic chain (Spreading center}
Generation of ocean crust
Subduction zone Basaltic ocean crust
(oceanic trench)

Generation of
oceanic crust and
depleted mantle

Marginal sea
I XX
NS

ST f

Partial melting f

Partial melting"f
in rising column

Continental crust :

of mantle SPHERE of primitive
250 kilometers (150 m) | mantle
Partial melting({ Low-velocity zone
of basalt crustg? (Asthenosphere at partial
which rises 4 melting temperature)
to feed ASTHENOSPHERE

volcanoes
Possible
fragmentation of

,@_ diving tongue of lithosphere
!

' Q (425 miles) 700-kilometer discontinuity
V////////// ////////// MESOPFIERE (Depleted mantle) W /// //////

FIGURE 4.3 Schematic cross-section of a lithospheric plate (after Dewey 1972). Note that
the mantle includes the mesosphere, the asthenosphere and the lower part of the lithos-
phere. Changes in rock composition or properties define the boundaries between these

elements.
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Plate Boundnvies

Divergent Plote Bovndary .

Oceanic Crust —s 0cemic spreading
i :
Continentad Crust e-gem{:({ atlanfic
Yl
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The rate of plate movement ranges from 1 to 10 centimeters per year.

Con

At the plate edges where there is contact with adjoining plates, boundary tectonic forces act on
the rock causing physical and chemical changes in them.

This is where the massive and radical geological changes (including earthquakes) occur.
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Where do earthquakes occur?

Three Main Types of Plate Boundaries:

Convergent Plate Boundary: When the two plates “bump” into each other
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Divergent Plate Boundary: When the two plates “pull away” from each other

Transform Plate Boundary: When the two plates “slide past” each other

3
G R
R

B. Conveargent baundary 7 %, ©. Transtam faull boundary §

New tectonic plate is created at mid-ocean ridges by the upwelling and cooling of magma (molten
rock) from the Earth’s mantle. In order to conserve mass, the horizontally moving plates are
believed to be absorbed at the ocean trenches where a subduction process carries the tectonic
plate downward into the Earth’s interior.

DIVERGENT BOUNDARY: CONVERGENT BOUNDARY:

Mid-ocean ridge seafloor spreading plate subduction

Oceanic crust . .
Volcanism Continental crust

ountain building

® Distribution
of earthquakes

Press & Siever (1986)
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An oceanic spreading ridge is the fracture zone along the ocean bottom where molten mantle
material comes to the surface, thus creating new crust. This fracture can be seen beneath the
ocean as a line of ridges that form as molten rock reaches the ocean bottom and solidifies.

An oceanic trench is a linear depression of the sea floor caused by the subduction of one plate
under another.

Cluter core

/ —— )
lrimar .
:! cOore ¥

This plate tectonics theory has a number of implications for our understanding of earthquakes.

First, many more earthquakes will occur along the edges of the interacting plates (interplate
earthquakes) than within the plate boundaries (intraplate earthquakes).

Second, because the directions of forces on plates vary across them, the mechanism of the
sources of earthquakes and their size differ in different parts of a plate.

Only about 10% of the world’s earthquakes occur along the ocean ridge system. In contrast,
earthquakes occurring where plate boundaries converge, such as trenches, contribute about 90
%.

Third, the grand scale of the plate pattern and the steady rate of plate spreading imply that along
a plate edge the slip should, on average, be a constant value over many years.

This idea suggests that the historical patterns of distance and time intervals between major
earthquakes along major plate boundaries provide at least crude indication of places at which
large earthquakes might occur.

Basic Seismology 25



Earthquakes and Volcanoes

Accumulated Volcanig
sediments mountains

Oceanic
lithosphere

tinental
osphere

Oceanic
lithosphere

inental
sphere

(c)

Figure 9-15 Three types of plate convergence.

Real-world examples illustrate three types of crustal collisions. Oceanic-continental (example: Nazca plate-South American plate collision
and subduction) (a); oceanic-oceanic (example: New Hebrides Trench near Vanuatu, 16° S, 168° E) (b); and, continental-continental
(example:India plate and Eurasian landmass collision and resulting Himalayan Mountains) (c). [Inset illustrations derived from Floor of the
Oceans, 1975, by Bruce C.Heezen and Marie Tharp.© 1980 by Marie Tharp.]

Three types of plate convergence
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1.10. Tectonic Maps
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1.11. Seismicity Maps

Location of Earthquakes (with Magnitude greater
than 5) in Paklstan (1900 2017)
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IRIS Earthquake Browser: http://ds.iris.edu/ieb/
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Global Earthquake Model Global Seismic Hazard Map
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Peak Ground Acceleration (PGA) map for Design Basis Earthquake (DBE)
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1.13. Seismic Waves
Earthquakes generate many types of seismic waves in complex patterns.

Some penetrate the earth and come to the surface in the same state, or slightly distorted. Others
are reflected, or refracted, or bent by something or some zone of different density within the earth

itself. Some travels round the circumference of the world and do not penetrate at all.

Loma Prieta San Francisco

Depth (kilometers)

Rays of seismic shear waves from the focus of the 1989 Loma Prieta earthquake through the crust
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There are 3 basic types of seismic waves:
o The primary (P) waves
o The secondary (S) waves
o The surface waves

P waves are compressional waves which exert a pull-push force.

on mMeChoansm . =
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The motion of a P wave is the same as that of a sound wave—as it spreads out, it alternately
pushes (compresses) and pulls (dilates) the rock.

These P waves, just like sound waves, are able to travel through both solid rock and liquid material
(such as volcanic magma or the oceans).

S waves are shear waves.

As it propagates through the body of rock, a shear wave shears the rock sideways at right angles
to the direction of travel.

S waves cannot propagate in the liquid parts of the earth, such as the oceans or magma.

Seismic Waves
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Body Waves:

When the body waves (the P and S waves) move through the layers of the rock in the crust, they
are reflected or refracted at the interfaces between rock types. Also, whenever either one is
reflected or refracted, some of the energy of one type is converted to waves of the other type.

P and S waves do not travel at the same speed, and these speeds vary with the substance
through which the waves are passing. Broadly speaking, a P wave travels faster than an S wave.

Thus at any site, the P wave arrives first, and the S wave arrives later.

The length of time between the arrival of the P and the S wave gives an indication of the distance
an earthquake is away from an observer. By using 3 or more seismograph stations, it is possible
to pinpoint where the earthquake occurred.

Surface Waves:

Surface waves have their motion restricted to near the ground surface. As the depth below this
surface increases, wave displacements decrease.
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Surface waves travel more slowly than body waves.

Surface waves in earthquakes can be further divided into 2 types: Love waves and Rayleigh

waves

The motion of a Love wave is essentially the same as that of S waves that have no vertical
displacement. It moves the ground from side to side in a horizontal plane but at right angles to
the direction of propagation. Love waves do not propagate through water.

Like rolling of ocean waves, the pieces of material disturbed by a Rayleigh wave move both
vertically and horizontally in a vertical plane pointed in the direction in which the wave is travelling.
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Figure 1.10 (a) A simplified picture of the paths of seismic P or S waves being reflected

and refracted in rock structures of the Earth’s crust. (b) The reflection and refraction of a
longitudinal (P) wave in an earthquake after it hits a boundary between two types of
rock. [From Bruce A. Bolt, Nuclear Explosions and Earthquakes: The Parted Veil (San

Francisco: W. H. Freeman and Company. Copyright 1976).]
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Instrumental Record at a Seismic Station
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Sumatra - Andaman Islands Earthquake (M,=9.0)
Global Displacement Wavefield from the Global Seismographic Network
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1.14. Locating Earthquakes

Although it is possible to infer a general location for an event from the records of a single station,
it is most accurate to use three or more stations.

+ A measurement of the P-S time at single station gives the distance between the station
and the event.

« Drawing a circle on a map around the station's location, with a radius equal to the distance,
shows all possible locations for the event.

* With the P-S time from a second station, the circle around that station will narrow the
possible locations down to two points.
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» It is only with a third station's P-S time that should identify which of the two previous
possible points is the real one.

Localization of
hypo- and epicenters
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PROPAGATION OF ELASTIC WAVES

for granite, & ='4.8 kilometers per second; e T 8 .
* for water,'a = 1.4 kilometers per second. e g P Mu ﬁfWCQ
S waves; Velocnty B=Vul ; PELEd) lesS S
for granite, B%_Z}O kxlometers per second; P
for water, B = 0 kilometers per second. ! _"' S ) CO m FQ Y&i {_O

Along the free surface of an elastic solid, two surface elashc waves ‘ S .
can propagate SR

Rayleigh waves - Velocity cR' <0.928, approximateli'
’ where Bis the S—wave veloaty in the rock.
love waves (for a layered solid) Velocity B, < ¢, < ﬂz

‘where B, and B, are S-wave velocities in the surface and deeper -
layers, respectxvely .

The dxmensxons of a harmonic wave are measured in terms of period -
‘T and wavelength A(see Appendxx H).

Yé
R v P{—U A'IV AVAAA_

A= Kobe 210 Sec (V-laigf« Intensity)
B= Osaka o~ Ho-see~{low 1t )

1.15. Seismoscopes

It consisted of a spherically formed copper vessel (about 2.4 m in diameter). In the inner part of
this instrument a column was so suspended that it can move in 8 directions.
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When an earthquake occurs, the vessel is shaken, the dragon instantly drops the ball, and the
frog which receives it vibrates vigoriously; anyone watching this instrument can easily observed
earthquakes.

/
In the year A.D. 136, a Chinese
called Choko (also called
= Chang Heng) invented an
instrument for indicating

earthquakes.

Once upon a time a dragon dropped its ball without any earthquake being observed, and people
therefore thought the instrument of no use, but after 2 to 3 days a notice came saying that an
earthquake had taken place in Rosei. Hearing of this, those who doubted the use of this
instrument began to believe in it again.

After this ingenious instrument had been invented by Choko, the Chinese government wisely
appointed a secretary to make observations on earthquakes.

The earliest modern seismographs was invented by John Milne around 1880s during when he
was Professor of Geology and Mining at the Imperial College of Engineering in Tokyo (University
of Tokyo).

The principal problem for constructing precise earthquake measuring devices during that time
was how to produce a body which would remain stationary, and detached from the world around
in order to record the relative movement of the ground on which it actually rested.
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They decided to make use of the mechanical principle of inertia—in essence the tendency of a

heavy body to stay put.

Thus their seismographs relied on using a freely swinging pendulum whose movements were

marked by pin or pen on a revolving drum of smoked glass, and later paper.

EEr bt
THEEEMEANNE NN
A e e

Mechanism of Seismograph:

An earthquake does not make the pendulum swing. Instead, the pendulum remains fixed as the

ground moves beneath it.

A pendulum with a short period (left) moves along with the support and registers no motion. A
pendulum with a long period (right) tends to remain in place while the support moves.

The boundary between the two types of behavior is the natural period of the pendulum. Only
motions faster than the natural period will be detected; any motion slower will not.

“Seismograph” usually refers a displacement-type seismometer.

The damping of the pendulum was also added to suppress the free vibration response and to
improve the performance of the seismographs.

The Milne seismographs employed 3 devices, one for each component of ground motion (up-
down, north-south, east-west components).
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Modern Seismographs:

The general principle behind the early seismographs is still the basic idea behind the designs of

present-day seismographs.
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In modern seismographs the relative motion between the pendulum and frame produces an
electrical signal that is magnified electronically thousands or even hundreds of thousands of times
before it is recorded.

The electrical signals can be recorded on to magnetic tapes, papers, or converted into equivalent
digital signals and stored in computer memory.

To recorders

2 - 3

Airtight container

Amplifier

Capacitor
plates

e
= 1
Radio-frequency

I oscillator and
|
l

|
|
|
1
l
1
\
\
\
i
l
i
l
|
|
|

\ I[nertial
mass

resonant circuit

7 Filter ;——

Servo coils

Figure 3.3 Principle of the vertical pendulum seismograph. The mass tends to remain
stationary as the Earth moves. Relative motion at the capacitor plates generates an
electrical signal that is fed to an analog or digital recorder. The filter feeds back spurious
signals, representing undesirable ground motions, to coils that keep the mass centered.
(From B. A. Bolt Inside the Earth.)

Most seismographs around the world are designed to detect small-amplitude motions (weak
motions) and are very sensitive “ears on the world”. They can detect and record earthquakes of
small size from very great distances (>1000 km).
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The IRIS Global Seismographic Network (GSN):

The goal of the GSN is to deploy 128 permanent seismic recording stations uniformly over the
earth's surface.

GSN & FEDERATION OF DIGITAL BROADBAND SEISMIC NETWORKS (FDSN)

IRIS: Incorporated
Research Institutions for
Seismology

http://www.iris.edu/

IRIS GSN France Japan Italy Germany China Australia U.S. Canada Other
* A & @ + *® * o+ v

Strong-motion Seismographs:

Strong-motion seismographs are specially designed to record the strong shaking of the ground in
such a way that the records obtained can be directly read as acceleration of the ground.

They are usually capable of recording acceleration of the ground greater than that of gravity.

Most strong-motion accelerometers do not
record continuously but are triggered into
motion by the first waves of the earthquake to
arrive.

STRONG M OTION SEISMOGRAPH
Type H-NETOS

Basic Seismology 53



FORCE = MASS x ACCELERATION
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Note: JMA seismic intensity is calculated from a three-
component acceleration record.

Strong Motion Stations in Taiwan and Distribution of the
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1.16. The Size of an Earthquake

The first scientific field study of the effects of a great earthquake was conducted by an Irish man,
Robert Mallet, who was recognized as the first true seismologist.

In his assessment of the effects of the Neapolitan Earthquake of 1857 in southern Italy, Mallet
was using the oldest instruments in the world: his eyes, a compass and a measuring stick.

Mallet's method included detailed mapping and tabulation of felt reports and damage to buildings
and geological movements.

In this way he was able to measure the strength and distribution of the earthquake ground motion.

By drawing lines on a map between places of equal damage or of equal intensity (isoseismal
lines), he determined the center of the earthquake shaking (the epicenter). Such maps are now
called isoseismal maps.

Intensity is measured by means of the degree of damage to structures of human origin, the
amount of disturbances to the surface of the ground, and the extent of animal and human reaction
to the shaking, not by measuring the ground motion with instruments.
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Figure 7.1 Isoseismal lines of intensity (Modified Mercalli scale) in the New Madrid,
Missouri, earthquake on December 16, 1811. The felt radius of the earthquake extended
to the East and Gulf coasts. Intensity in the then sparsely populated area west of the
epicenter is unknown. Intensity values at specified points are given in Arabic numerals,
and the isoseismals are labeled by Roman numerals. [Courtesy of O. Nuttli and Bull.
Seism. Soc. Am.]
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FIQURE 3.2 Generalized isoseismal map of the February 9, 1971 San Fernando, California
earthquake. The epicenter is shown as a star. Roman numerals represent Modified Mer-
calli intensities between isoseismals. Arabic numerals represent Modified Mercalli intens-
ities at specific cities. Dots represent locations where it was reported that the earthquake
was not felt (alter Coffman and Angel 1983).

1.16.1. Intensity Scales

The first intensity scale of modern times was developed by M. S. de Rossi of Italy and Francois
Forel of Switzerland in the 1880s. It was called the Rossi-Forel Intensity Scale (I — X).

A more refined scale, with 12 values, was constructed in 1902 by the Italian seismologist and
volcanologist G. Mercalli.

A modified version of it, called the Modified Mercalli Intensity (MMI) Scale, was developed by H.
O. Wood and Frank Neumann to fit construction conditions in California (and most of the United
States).

Alternative intensity scales have been developed and are widely used in other countries, notably
in Japan (the JMA Intensity Scale) and the central and eastern European countries (the
Medvedev-Sponheuer-Karnik (MSK) Intensity Scale), where conditions differ from those in
California.
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Isoseismal Map of the Mandalay earthquake of 23 May 1912 (after Brown, 1914), Rossi-Forel
Intensity Scale
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FIGURE 3.1 A comparison of seismic intensity scales (after Murphy and O'Brien 1977;
and Richter,1958).

Comparison of different intensity scales
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Comparison of the different intensity scales
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JMA Instrumental Intensity in the 2000 Tottori EQ Measured by National Seismic Networks
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Many nations use the Modified
Mercalli scale of earthquake damage,

but some countries employ their own.

This is the Chinese version.

Modified
Mercalli 1] " w v vl
scale vi vii VIll and above
Chinese
Classifi- 12 3 45 6 7
cation K 8 9 10 and above
& <, )
. A
\
4 3
Reaction Not felt by people A few people indoors | Sleeping persans Things indoors fall 0ld buildings suff :
of peaple generally. Just noticea slight wake, Honging items over. - f-unslderauga ds.;‘m:;e ‘h;:::v hcli‘:s;s suffer Most houses Houses everywhere
and recordable by vibration. like lamps swing. ~ houses generally ode: Alew damaged heavily or collapse.
buildings. seismograph. some damage — old pse. collapse.
L4 | onesmaycollapse.

Chines Intensity scale
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The Modified Mercalli Intensity Scale
(Wood and Neumann, 1931)

I. Not felt—or, except rarely under especially favorable circumstances. Un-
der certain conditions, at and outside the boundary of the area in which
a great shock is felt: sometimes birds, animals, reported uneasy or dis-
turbed; sometimes dizziness or nausea experienced; somelimes trees,
structures, liquids, bodies of water, may sway—doors may swing, very
slowly.

I Felt indoors by few, especially on upper floors, or by sensitive, or nervous
persons. Also, as in grade [, but often more noticcably: sometimes hanging
objects may swing, especially when delicately suspended; sometimes trces,
structures, liquids, bodies of water, may sway, doors may swing, very
slowly; sometimes birds, animals, reported uneasy or disturbed; some-
times dizziness or nausea experienced.

HI. Felt indoors by several, motion usually rapid vibration. Sometimes not

recognized to be an carthquake at first. Duration estimated in S0Me cases.
Vibration like that due to passing of light, or lightly loaded trucks, or
heavy trucks some distance away. Hanging objects may swing slightly.
Movements may be appreciable on upper levels of tall structures, Rocked
standing motor cars slightly.

IV. Felt indoors by many, outdoors by few. Awakened few, especially light
sleepers. Frightened no one, unless apprehensive from previous experi-
ence. Vibration like that due to passing of heavy or heavily loaded trucks.
Sensation like heavy body striking building or falling of heavy objects
inside. Rattling of dishes, windows, doors; glassware and crockery clink
and clash. Creaking of walls, frame, especially in the upper range of this
grade, Hanging objects swung, in numerous instances. Disturbed liquids
in open vessels slightly. Rocked standing motor cars noticeably,

V. Felt indoors by practically all, outdoors by many or most: outdoors direc-
tion estimated. Awakened many, or most. Frightened few—slight excite-
ment, a few ran outdoors. Buildings trembled throughout. Broke dishes,
glassware, to some extent. Cracked windows—in some cases, but not gen-
erally. Overturned vases, small or unstable objects, in many instances,
with oceasional fall. Hanging objects, doors, swing generally or consider-
ably. Knocked pictures against walls, or swung them out of place. Opened,
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VI.

VIL

VIIL.

or closed, doors, shutters, abruptly. Pendulum clocks stopped, started, or
ran fast, or slow. Moved small objects, furnishings, the latter to slight
extent. Spilled liquids in small amounts from well-filled open containers.
Trees, bushes, shaken slightly.

Felt by all, indoors and outdoors. Frightened many, excitement general,
some alarm, many ran outdoors. Awakened all. Persons made to move
unsteadily. Trees, bushes, shaken slightly to moderately. Liquid set in strong
motion. Small bells rang—church, chapel, school, etc. Damage slight in
poorly built buildings. Fall of plaster in small amount. Cracked plaster
somewhat, especially fine cracks, chimneys in some instances. Broke dishes,
glassware, in considerable quantity, also some windows. Fall of knick-
knacks, books, pictures. Overturned furniture in many instances. Moved
furnishings of moderately heavy kind.

Frightened all—general alarm, all ran outdoors. Some, or many, found it
difficult to stand. Noticed by persons driving moltor cars. Trees and bushes
shaken moderately 1o strongly. Waves on ponds, lakes, and running water.
Water turbid from mud stirred up. Incaving to some extent of sand or
gravel stream banks. Rang large church bells, ete. Suspended objects made
to quiver. Damage negligible in buildings of good design and construc-
tion, slight to moderate in well-built ordinary buildings, considerable in
poorly built or badly designed buildings, adobe houses, old walls (espe-
cially where laid up without mortar), spires, ete, Cracked chimneys to
considerable extent, walls to some extent. Fall ol plaster in considerable
to large amount, also some stucco. Broke numerous windows, furniture to
some extent. Shook down loosened brickwork and tiles. Broke weak chim-
neys at the roof-line (sometimes damaging roofs). Fall of cornices from
towers and high buildings. Dislodged bricks and stones. Overturned heavy
furniture, with damage [rom breaking. Damage considerable to concrete
irrigation ditches.

Fright general—alarm approaches panic. Disturbed persons driving mo-
tor cars. Trees shaken strongly —branches, trunks, broken off, especially
palm trees. Ejected sand and mud in small amounts. Changes: temporary,
permanent; in flow of springs and wells; dry wells renewed flow; in tem-
perature of spring and well waters, Damage slight in structures (brick)
built especially to withstand earthquakes. Considerable in ordinary sub-
stantial buildings, partial collapse: racked, tumbled down, wooden houses
in some cases; threw out panel walls in frame structures, broke off de-
caved piling. Fall of walls. Cracked, broke, solid stone walls seriously. Wet
ground to some extent, also ground on steep slopes. Twisting, fall, of
chimneys, columns, monuments, also factory stacks, towers. Moved con-
spicuously, overturned, very heavy furniture.

Panic general. Cracked ground conspicuously. Damage considerable in
(masonry) structures built especially to withstand earthquakes: threw out
of plumb some wood-frame houses built especially to withstand carth-
quakes; great in substantial (masonry) buildings, some collapse in large
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XI.

AL

part; or wholly shilted frame buildings off foundations, racked frames;
serious to reservoirs; underground pipes sometimes broken.

. Cracked ground, especially when loose and wet, up to widths of several

inches; hssures up to a yard in width ran parallel to canal and stream
banks. Landslides considerable from river banks and steep coasts. Shifted
sand and mud horizontally on beaches and flat land. Changed level of
water in wells. Threw water on banks of canals, lakes, rivers, etc. Damage
serious to dams, dikes, embankments. Severe to well-built wooden struc-
tures and bridges, some destroyed. Developed dangerous cracks in excel-
lent brick walls. Destroyed most masonry and frame structures, also their
foundations. Bent railroad rails slightly. Tore apart, or crushed endwise,
pipe lines buried in earth. Open cracks and broad wavy [olds in cement
pavements and asphalt road surfaces.

Disturbances in ground many and widespread, varying with ground ma-
terial, Broad hssures, earth slumps, and land slips in soft wet ground.
Ejected water in large amounts charged with sand and mud. Caused sea-
waves (“tidal” waves) of significant magnitude. Damage severe Lo wood-
frame structures, especially near shock centers. Great to dams, dikes, em-
bankments often for long distances. Few, if any (masonry) structures re-

mained standing, Destroyed large well-built bridges by the wrecking of

supporting piers, or pillars. Affected yielding wooden bridges less. Bent
railroad rails greatly, and thrust them endwise. Put pipe lines buried in
earth completely out of service.

Damage total—practically all works of construction damaged greatly or
destroyed. Disturbances in ground great and varied, numerous shearing
cracks. Landslides, falls of rock of significant character, slumping of river
banks, etc., numerous and extensive. Wrenched loose, tore off, large rock
masses, Fault slips in firm rock, with notable horizontal and vertical offset
displacements. Water channels, surface and underground, disturbed and
modihied greatly. Dammed lakes, produced waterfalls, deflected rivers, etc.
Waves seen on ground surfaces (actually seen, probably, in some cases).
Distorted lines of sight and level. Threw objects upward into the air.
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1.16.2. Earthquake Magnitudes

If the magnitudes of earthquakes are to be compared worldwide, a measure is needed that does
not depend (as does intensity) on the density of population and type of construction.

Such quantitative scale was originated in 1931 by Kiyoo Wadati in Japan and later on developed
by Dr. Charles Richter in 1935 in California.

Richter defined the magnitude of an earthquake as the logarithm to base 10 of the maximum
seismic-wave amplitude (in micrometer) recorded on a standard Wood-Anderson short-period
seismograph* at a distance of 100 km from the earthquake epicenter.

Every time the magnitude goes up by 1 unit, the amplitude of the earthquake waves increases 10
times.

At first the scale was intended to deal with Californian earthquakes only, but with the cooperation
of Professor Beno Gutenberg the scale was adapted to enable earthquakes to be classified
worldwide.

The Richter magnitude scale is also called Local Magnitude (M.).

Basic Seismology 66



EXAMPLE OF THE CALCULATION OF THE RICHTER
MAGNITUDE (M,) OF A LOCAL EARTHQUAKE
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Procedure for calculating the local magnitude, M,

1. Measure the distance to the focus using the time interval between
the S and the P waves (S — P = 24 seconds).

2. 'Measure the height of the maximum wave motion on the seismo-
gram (23 millimeters).

3. Place a straight edge between appropriate points on the distance
(left) and amplitude (right) scales to obtain magnitude M, = 5.0.

At the present time there are several magnitude scales. The most used magnitude scales are
surface-wave magnitude (Ms), body-wave magnitude (my), and moment magnitude (My).
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M;s is a world-wide scale determined from the maximum amplitude of Rayleigh waves with a period
of about 20 seconds (between 18 s and 22 s) on a standard long-period seismograph?. It is most
widely used magnitude scale for large damaging shallow earthquakes (less than 70 km deep).

It was developed in 1950s by the same researchers who developed M. (Gutenberg and Richter)
in order to improve resolution on larger earthquakes.

my, is a world-wide scale determined from the maximum amplitude of the first few cycles of the P
wave motion observed on the vertical component of seismogram. The waves measured typically
have a period of about 1 second. It is widely used for characterizing deep earthquakes.

Saturation of Earthquake Magnitudes:

It must be noted that most magnitude scales saturate, or stop increasing with increasing
earthquake size.

This occurs because each magnitude scale is determined using a seismic wave of a particular
period and wave length, which at a certain level does not increase in amplitude as the earthquake
source size and energy release increase.

9

Magnitude

Moment Magnitude My

FIQURE 2.4 A cumparison of moment magnitude with other magnitude scales (after
Heaton, Tajima and Mori 1986),
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Moment Magnitude Scale:

A more reliable and robust magnitude scale is moment magnitude (My). It was introduced by
Hanks and Kanamori in 1979. It is based on the seismic moment (M), which is a measure of the
whole dimension of the slipped fault:

Mw = (2/3) (LOglo Mo -107)

Where M, is seismic moment (in N.m). Geologically M, is a description of the extent of
deformation at the earthquake source. It is simply defined as:

Mo = mAD = 2mEs/Ds

Where m is the shear modulus of the rock in the source region (typically 30 gigapascal)

A is the fault rupture area

D is the average dislocation or relative movement (slip) between the opposite sides of the fault.
Es is radiated seismic energy

Ds is stress drop

The definition based on A D allows M, to be derived from geological faulting parameters that can
be easily observed in the field for large surface-rupturing earthquakes. The definition based on
Es/ Ds allows M, to be derived from seismological measurements.
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Figure 2.31 Relative energy of various natural and human-made phenomena. (After
Johnston, 1990. Reprinted by permission of USGS.)

Earthquake Energy

Each unit change in magnitude corresponds to a 32 fold increase in earthquake energy.

1.17. USGS Earthquake Event Pages
An example of 24 September 2019 Mirpur Earthquake (M 5.4)

USGS Event Page:

https://earthquake.usgs.gov/earthquakes/eventpage/us60005mqp/executive
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https://earthquake.usgs.gov/earthquakes/eventpage/us60005mqp/executive

IRIS Event Page:
http://ds.iris.edu/ds/nodes/dmc/tools/event/11121410
Time History Data from Wilber 3 (IRIS):
http://ds.iris.edu/wilber3/find_stations/11121410

NIL: Nilore, Pakistan

Network Station Code Latitude Longitude Elevation Data Center @

I NIL 33.65° 73.27° 629 m

Select an instrument to preview waveform data:
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http://ds.iris.edu/ds/nodes/dmc/tools/event/11121410
http://ds.iris.edu/wilber3/find_stations/11121410

2.1.

Chapter 2
Seismic Hazard Assessment

Earthquake Hazards

Ground shaking

Ground displacement along faults: surface rupture

Ground failures: soil liquefaction, landslide, mud slide, differential soil settlement, etc.
Tsunami

Floods from dam and levee failures

Fires resulting from earthquakes

Ground Shaking Hazard: Wenchuan Earthquake (2008), China (Magnitude = 8.0)
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Ground Shaking Hazard: Yogyakarta Earthquake (2006), Indonesia (Magnitude = 6.2)
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The 1999 Chi-Chi earthquake, Shih-Kang Dam
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Soil Liquefaction Hazard
Loss of Bearing Capacity

A building in Dagupan,
Philippines after the
1990 Luzon EQ

: <:| Overturned building in
Adpazari, Turkey in the 1999
Kocaeli EQ

Damage to Sewers

Sand Boiling Sand Boiling

Crack or Residuél

Strain ! ) )
EReS|duaI Strain

Original Soil
(Liguefied)

Lift-up Force |
Replaced Soil (Liquefied)
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Tokachi-oki EQ, Hokkaido (2003)
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5
Earthquake-induced Landslide in Wenchuan County, China (Wenchuan Earthquake, 2008)

Dynamic Stability of Embankment
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Inundation

Propagation

Generation

Tsunami generated by an earthquake
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The 1995 Kobe Earthquake
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Fires resulting from the Earthquake (Kobe EQ, 1995)
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Fires resulting from the
Earthquake (Kobe EQ, 1995)

X'

2.2. Basic Questions

*  Where will future earthquakes occur?
*  What will be their size?
* What will be their frequency of occurrence?

* What will be the ground shaking intensity at the site produced by earthquakes of different
size, focal depth, and epicentral location?

* How will the ground motion be influenced by local soil conditions and geology?
* What will be the earthquake hazards (landslide, liquefaction, etc.) produced at the site?

* How about the susceptibility of buildings and structures to damage from the ground
shaking and ground failures?
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Lack of Resources
for Communities Population

Natural or Man- I DIEEI i Urbanization and Un-
made .Bu”t planned development
Phenomena Environment

Disaster Hazard . Vulnerability . Exposure

Risk

To reduce risk of disaster and increase safety,
we need to estimate hazard properly,
and Reduce Vulnerability

Seismic Hazard & Seismic risk

» Itis not possible to predict when and where earthquakes will occur and how large they will
be, therefore, seismic hazard must be described in terms of probabilities.

» Seismic hazard: the probability of occurrence of potentially destructive seismic ground
shaking at given site within a given time interval.

» Seismic risk: the “risk” depends not only on “seismic hazard” but also on the susceptibility
to damage of structure.

2.3. Seismic Hazard and Seismic Risk
SEISMIC HAZARD x SEISMIC VULNERABILITY = SEISMIC RISK

* In principle, Seismic Hazard Assessment (SHA) can address any natural hazard
associated with earthquakes, including ground shaking, fault rupture, landslide,
liquefaction, or tsunami.

* However, most interest is in the estimation of ground-shaking hazard, since it causes the
largest economic losses in most earthquakes.

» Moreover, of all the seismic hazards, ground motion is the predominant cause of damage
from earthquakes; building collapses, dam failures, landslides, and liquefactions are all
the direct result of ground motion.

» The Chapter, therefore, is restricted to the estimation of the earthquake ground motion
hazard.

Seismic Zone: A seismic zone is generally a large region within which, for practical purposes, the
seismic hazard may be taken to be approximately uniform.
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A seismic microzone is a small area within a region that has variations in hazard due to local soil

conditions, topography, proximity to faults, etc. (the microzonation is not included in the scope of
this lecture).

2.4. Ground Motion Parameters

There are many different ground motion parameters—displacement, velocity, acceleration, or
MMI.

Usually Peak Ground Acceleration (PGA) is considered to be the preferred ground motion
parameter.

Seismic Hazard = Ground-shaking Hazard = the probability of occurrence of potentially
destructive seismic ground shaking at a given site within a given time interval.

GROUND ACCELERATION

) A o Al -
Ll ” 980 gas= 1G

Grouwd velecity Dok Ground Accelerakion:
Index of Seismic Loading

020 -
101/ /\/ \\ GROUND DISPLACEMENT
cmn O - \‘ / 3, f"\VA /\ —
ol YV \J g™ e
© 5 1 15 2 25 30

TIME (SEC)
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2.5. Seismic Hazard Assessment

Seismic Hazard Analysis (SHA) has been widely used by engineers, regulators, and planners to
mitigate earthquake losses:

Specifying seismic design levels for individual structures and building codes

Evaluating the seismic safety of existing facilities

\

Planning for societal and economic emergencies (emergency preparedness)

<

Setting priorities for the mitigation of seismic risk

<

Insurance analysis

Information for Seismic Hazard Analysis:
a) Seismic Sources
» Location, shape, activity of seismic source zones (or faults)
» Historical earthquake record (date, time, epicenter co-or, M. focal depth)
* Magnitude—recurrence relationship for each source zone (or fault)
b) Ground motion Characteristics
» Accelerograrms at many sites, observed intensities of shaking
* Related geological information
« Attenuation relationship

The determination of probabilistic ground acceleration should be rationally based on all available
information.

2.6. Probabilistic vs. Deterministic

DSHA considers the effect at a site of either a single scenario earthquake, or a relatively small
number of individual earthquakes.

Difficulties surrounded the selection of a representative earthquake on which the hazard
assessment would be based.

PSHA quantifies the hazard at a site from all earthquakes of all possible magnitudes, at all
significant distances from the site of interest, as a probability by taking into account their frequency
of occurrence.

Deterministic earthquake scenarios, therefore, are a subset of the probabilistic methodology.
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2.7. The Probabilistic Seismic Hazard Assessment (PSHA)

Probabilities are useful in characterizing seismic hazard since earthquakes and their effects are
random phenomena.

Probabilistic seismic hazard analysis(PSHA) takes into account the seismic potential of the
seismic sources, the random nature of earthquake occurrences, the random nature of the ground
motion produced by these earthquakes, the damage potential of these ground motions, and the
uncertainties involved at all levels of the process .

Prior to the widespread use of PSHA for assessing earthquake hazards, Deterministic methods
(DSHA) dominated such assessments.

2.8. The PSHA Procedure

1) Selection of site(s)

2) Identification of all critical tectonic features (e.g. active faults, seismic source zones) likely
to generate significant earthquakes—seismic sources

3) Defining the seismicity of these seismic sources
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4) Selection of a suitable attenuation relationship—an equation that estimates ground-motion
parameters from earthquake magnitude and source-to-site distance for various site
conditions

5) Computation of the ground motion parameters at the site.

=
T |
o
Fault = .
(Line Source) 'é &
~. Site S
(o]
Ll
‘6
I § L)
“— )
Area% ?,,
Source o =
. Magnitude M
Step 1 Step 2
SOURCES RECURRENCE

T
o

Uncertainty
in Attenuation

-
:

' Magnitude M,

Peak Acceleration
Probability of Exceedance

|
i
|

Distance 1] Acceleration
Step 3 Step 4
GROUND MOTION PROBABILITY OF
EXCEEDANCE

FIGURE 10.2 Basic steps of probabilistic seismic hazard analysis (after TERA Corporation
1978).

» The analytical approach of PSHA was first developed by C.A. Cornell in 1968.

* It was used by S.T. Algermissen et.al. (USGS) for developing a probabilistic seismic
hazard map of US in 1976.
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*+ The map was later on used as a basis for developing the US seismic zone map in the
Uniform Building Code (US) in 1988.

» The analysis procedure is currently widely accepted and used all over the world.

The Key Assumptions in Calculating Probabilistic Ground Motions

1) Earthquakes occur within the defined seismic source zones or along the defined active
faults.

2) Within each defined seismic source zone (or active fault), earthquakes occur randomly at
any location with an equal chance (probability).

3) Within each defined seismic source zone (or active fault), earthquakes randomly occur in
time, in which the average rate of occurrence is defined by its magnitude-recurrence
relation. This random occurrence in time is modeled as a Possion process.

4) The occurrence of an earthquake is statistically independent of the occurrence of other
earthquakes.

5) In any earthquake event, the ground motion parameter (e.g. PGA, SA) at the site of
interest can be estimated from the earthquake magnitude, source-to-site distance, and
other earthquake parameters by using the selected attenuation relationship.

The Cornell's analysis method is based upon the following assumntions :
1. Earthquake epiceh!:ers are located within seismic sourée zones..

2. Within a source zone, earthquake epicenters are uniformly distributed
(spatially).

3. Earthquake occurrences in different seismic source zones are statistically
independent. '

4. With a source zone, earthquakes randomly occur in time according to a

Poi§301)1 distribution ( the average rate of earthquake occurrences is constant
in time). . :

5. The average rate of earthquake occurrences is derived from the :nagnitude-
recurrence relationship N(m), which is given by the Gutenberg-Richter

model : Log N(m)=a-b m. The model is sometimes called “the
exponential model".

6. The peak ground acceleration at a given site depends on earthquake

magnitude and source-to-site distance; it can be computed by an attenuation
relationship. ' :
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2.9. Identification of Seismic Sources

Where active faults have been identified and mapped, they become the sources of future
earthquakes.

Where specific faults have not been identified or their characteristics are not well understood, it
is common to define ‘seismic source zone’.

Within the seismic source zone, earthquakes are typically modeled either as a single point of
energy release (a point source) or as a rupture on a fault (a finite-size source) with a random
location or orientation.

In such cases, the challenge of the analyst is to identify source zones in which the seismicity is
relatively uniform.

Even in areas where faults are well defined, a source zone may be needed to model the random
occurrence of small and moderate earthquakes (M < 6.5)—background seismicity.

100° 05" 90" 85" 80" 75° 70° 65°

4s*

as*

o,
s

3

25%)

FiGure 4.—Seismic source zones within the conterminous United States (from Algermissen and Perkins, 1976). Zone numbers correspond to
those in table 4.
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2.10. Defining the Seismicity of Seismic Sources

One commonly used parameter for defining the seismicity:

The rate of occurrence of earthquakes larger than some lower-bound magnitude m, = v
* M, is defined as the smallest earthquake expected to produce damage.
*  Typically me=4.0

* In traditional applications of PSHA, n is simply estimated from the historical rate of
occurrence of earthquakes exceeding mo

* The estimate requires historical and instrumental records of earthquakes

» Another relatively new technique—paleoseismic investigation—has been successful in
providing information on prehistoric fault movements and seismicity of active faults.
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SOURCE YEAR MO DA HR MN SEC LAT LONG DEPTH ——————-MAGNITUDES-~————-— INT

(k) BODY SUR OTHER LOCAL MAX S.D. OBS.
%165 1978 12 21 22 36 13.2.023.173N 096.196E 033 4.4 B 0.5s 008
* 2 IsSC 1978 12 212236 16 022.9 N 095.8 E 032 4.2 MB
BKK 1978 12 25 08 58 24.22017.24% N 096.45 E 010 » . kel 0.56s 003
GS 1978 12 29 08 53 21.7 023.559% 092.970E 033 4.8 MB 4.0S 1.8 s 038
* 1065 1978 12 30 23 33 21.9 024.458N 093.918E 033 4.6 MB 1.0 s 008
* 2 ISC 1978 12 30 23 33 23.1 024.81 N 094.17 E 033 4.5 MB 015
* 3 NAO 1978 12 3¢ 23 33 14 023.0 N 094.0 E 4.1 MB
¥ 4 HFS 1978 12 30 23 33 21 025.0 N OS4.0 E 5.0 MB -
* 1G5 1979 ©1 01 18 51 10.8 020.898N 093.752E 062 5.3 MB 0.9 s 166
* 2 ISC 1979 ©O1 01 18 51 10.9 020.89 N 093.69 E 061 5.3 MB L.7S 236
* 3 M0S 1979 01 01 18 51 5.6 020.62 N 093.76 E 033 5.5 MB 4.6S
* 4 PEX 1979 01 01 18 51 13 020.8 N 093.8 E 050 5.08
ISC 1979 01 09 02 39 56 G©24.96 N 092.5 E 064 L4.3 MB 012
BKX 1979 01 09 17 45 50.1 019.02 N 097.29 E 010 3.5 L 0.40s 003
* 105 1979 O1 09 23 28 4L.3 C20.914N 101.7T0E 033 4.8 MB 1.0 s 020
* 2 TSC 1979 ©01 09 23 28 L4.5 020.97 N 101.77 E 033 4.7 MB 030
®1GS 1970 01 09 23 33 44.6 020.966N 102.017E 033 4.9 MB 4.7S 1.4 s 040
® 2 ISC 1979 01 09 23 33 B4.8 021.05 N 102.03 E 033 4.8 MB .78 056
* 3 MOS 1979 ©1 €9 23 33 0.0 021.0% N 102.05 E 001 4.9 MB 4.83
* 1 BKK 1979 01 13 06 41 20.8 021.08 N 102.90 E 018 4.5 L 1.71s 003
* 2 ISC 1979 01 13 06 41 28.5 021.34 N 102.39 E. 000 : 005
* 3 PEK 1979 01 13 06 41 26 021.2 N 103.0 E 4.4s
BKK 1979 01 14 12 38 47.6 022.48 N 100.68 E 009 4h g 0.85s 003
BKK 1979 ©1 18 01 40 28.3 014.36-N 096.56 E 010 3.7 L 1.59s 003
=165 1979 ©1 20 17 06 50.5 015.84TN 096.262E 033 4.1 MB 0.9 s 008
% 2 ISC 1979 O1 20 1T 06 48.8 016.1 N 096.08 E 033 4.1 MB on
BKK 1979 01 20 21 4G 31.2 020.79 ¥ 102.05 E 016 / 3.8 L 1.18s 003
BKK 1979 01 20 21 52 44.9 020.80 N 101.91 E 007 3.6 L 0.31s 003
BKK 1979 01 21 17 19 54.2 £°8.05 N 096.25 E 008 .1 L 0.87s 003

Instrumental earthquake data of Myanmar, Thailand and Indonesia

Investigation of Active Faults: Fault Trenching in Taiwan

4 o

.‘;;"
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Compressional stress
(b) Thrust o reverse fault (compression)

Fault Trenching in Kanchanaburi, Thailand
W D %5 € LA "

2.10.1. Magnitude-Recurrence Relationship

The most commonly used equation (model) to describe the occurrence of earthquakes is the well-
known Gutenberg-Richter relationship:

LogioN(m) = a- b.m
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N(m) is the average number per year of earthquakes having magnitudes greater than m.
a and b are constants; they are conventionally obtained from an appropriate statistical analysis
of historical earthquakes.

10% is the average number per year of earthquakes above magnitude zero.
b describes the relative rate of occurrence of different magnitudes. b is typically 1.0 + 0.3.

The form of this relationship has been verified from observations of seismicity throughout the
world.

105E T L T T e T
. F | | | 4
g [ ‘ ; ' 1
('36 |o“E R |
g F | | ] m N(m)
§ IO3;'7 ) \ogn=l7.?—09:’v‘l | . : 80 2
5 i 70 20
g | ‘ 6.0 100
5 50 3,000
i f 40 15,000
§ 1% E
© o .
s | The Gutenberg-Richter
| T (exponential) model
g -
Z olk

|

Magnitude m

Fig. 5.5. Mean annual frequency distribution of world earth-
quakes, 1904-1946; ndM is the mean annual number of shocks
having magnitudes lying between M and M + dM.

Fault Sources

» For some faults, the occurrence rate of large earthquakes deviates from that predicted by
Gutenberg-Richter relationship.

» Forthese faults, a characteristic earthquake model is thought to represent more accurately
the seismicity of the fault.

Seismic Hazard Assessment 96



10 T T T T T T T

Annual Number of Earthquakes, N (m

-5 [ DR MR N | 1
105 6 7 8

Magnitude, m
FIGURE 8.7 Comparison of the exponential
(solid line) and characteristic recurrence (dashed
line) frequency curves. (From Youngs, R.R. and
Coppersmith, K.J., Bull. Seismol. Soc. Am., 75,
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2.10.2. Magnitude-scaling relationships
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Problems with wells and Coppersmitt (1994) Equatims:

, s in wewtern US
Developed for fow ;
: (cannof be used for Stoble Continentad Gones <

CWGZS{ US)
oY esstern vse , oblige
yonts (ol novmad] | SS,veverse,
b) No &7 e ( ,fauiff)

C) IVMPP“P”‘M use 9# monS
Y Oufdated empivied  dala
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2.11. Attenuation Relationships

The ground motion attenuation relationships provide the means of estimating a strong-ground-
motion parameter of interest from parameters of the earthquake, such as magnitude, source-to-
site distance, fault mechanism, local site conditions, etc.

A wide variety of empirical ground motion attenuation relationships is available for application in
PSHA.

The choice of an appropriate relationship is governed by the regional tectonic setting of site of
interest, whether it is located within a stable continental region, or an active tectonic region, or
whether the site is in proximity to a subduction zone tectonic environment.
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FIGURE 5.6 Geographic distribution of active and stable continental tectonic regions worldwide. (From Johnston,
A.C. 1994. “Seismotectonic Interpretations and Conclusions from the Stable Continental Region Seismicity Database,”
in The Earthquake of Stable Continental Regions, Vol. 1, Assessment of Large Earthquake Potential, Electric Power

Research Institute, Palo Alto, CA, pp. 1-103. With permission.)
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TABLE 5.3

List of Selected Attenuation Relations

Region Tectonic Environment

Attenuation Relation

Western North America

Eastern North America Shallow stable crust
Europe Shallow active crust
Shallow stable crust
Japan All types undivided
Worldwide Shallow extended crust

Subduction interface
Subduction intraslab
Subduction undivided

Shallow active crust

Abrahamson and Silva [1997]
Boore et al. [1997]

Campbell and Bozorgnia [in press]
Sadigh et al. [1993, 1997]
Atkinson and Boore [1995, 1997]
Toro et al. [1997]

Campbell [in press]

Ambraseys et al. [1996]

Dahle et al. [1990]

Molas and Yamazaki [1995, 1996]
Spudich et al. [1999]

Youngs et al. [1997]

Youngs et al. [1997]

Crouse [1991a, 1991b]

Ground motion attenuation is often represented by the form:

LOgloY = Cc1 +Co.M +C3.L0g10R +Ccs.R+ Cs5.F + C6.S + e

nw 11 o =2 <

e

S

S

S

S

S

is

the ground motion parameter of interest (i.e. PGA, PGV, SA, SD)

earthquake magnitude
source-to-site distance
the faulting mechanism of the earthquake

a description of the local site conditions

a random error term with a mean of zero and a standard deviation of s (a Gaussian
probability distribution); this term describes the variability in ground motion.
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FIGURE 7.4 Median (S0th percentile) estimates for peak horizontal acceleration from
Campbell (1981a) and Joyner and Boore (1981), Joyner and Boore (1981} estimates of the
maximum horizontal component have been reduced by 12% so that they may be com-
pared with the (Campbell 1981a) estimates of the mean horizontal component {after
Camphbel] 1981a).

PGA(g)
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Random error of attenuation model
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FIGURE 7.2 Schematic illustration of methods of distance measurement used in the
determination of the distance value to be associated with a pround motion ohservation,
M1 is the hypocentral distance (Tocal depth is h), M2 is the epicentral distance, M3 is the
distance to the center of high-energy release (or high localized stress drop), M4 is the
closest distance to the slipped fault, in this case, the fault rupture does not extend 1o the
surface, and M5 is the closest distance to the surface projection of the fault rupture (after
Shakal and Bernreuter 1981).

Source-to-site distance
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TABLES5.5 Faulting Mechanism Categories and Related Rake Angles for Selected Attenuation

Relations
Attenuation Relation Category F Rake Angle (A)

Abrahamson and Silva [1997] Strike slip 0 0-30°, 150-210°, 330-360°
Normal 0 210-330°
Reverse-oblique 0.5 30-60°, 120-150°
Reverse 1.0 60° to 120°

Boore et al. [1997] Strike slip — 0-30°, 150-210°, 330-360°
Normal — 210-330°
Unknown — Unknown or random
Reverse — 30-150°

Campbell and Bozorgnia [in press]  Strike slip 0-22.5°, 177.5-202.5°, 337.5-360°
202.5-337.5°
22.5-157.5° (& > 45°)

22.5-157.5° (& <45°)

0
Normal 0
Reverse (Fgy =1) 1.
Thrust (Fry =1) 1

0

Sadigh et al. [1993, 1997] Strike slip 0-45°, 135-225°, 315-360°
Normal 0 225-315°
Reverse 1.0 45-135°

Spudich et al. [1999] Strike slip — 0-45°, 135-225°, 315-360°
Normal — 225-315°

Note: Unless otherwise indicated, an unknown or random faulting mechanism is given by F = 0.5,
Fyy=0.25, and Fypy = 0.25.

TABLE5.2 Definition of Building-Code Site Classes

30-m Velocity, Vi, (m/sec)

Site Class Soil Profile Name Range Average
A Hard rock >1,500 1890
B Rock 760-1500 1130
BC BC boundary 555-1000 760
C Very dense soil and soft rock 360-760 560
CD CD boundary 270-555 360
D Stiff soil 180-360 270
DE DE boundary 90-270 180
E Soft soil <180 150

Source: Adapted from Wills, C.]. et al. 2000. “A Site-Conditions Map for Califor-
nia Based on Geology and Shear-Wave Velocity,” Bull. Seismol. Soc. Am., 90,
$187-5208. With permission.

LOgloY = Ccp, +Cco.M +03.L0910R +Cs.R+ Cs5.F + ce.S + e

Coefficients c1, C2, C3, Cs4, Cs, and cs are normally determined by fitting the equation to actual
ground motion data (applying statistical regression analyses).

The term cs.Logie R represents the geometric attenuation of the seismic wave front as it
propagates away from the earthquake source.
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The term c4.R represents the anelastic attenuation that results from the material damping and
scattering as the seismic waves propagate through the crust.
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FIGURES5.1 Example PGA attenuation relation (top) and its associated database (bottom). Uncorrected recordings
are analog or digital acceleration time histories that have not been processed and, therefore, can provide only estimates

of PGA. Corrected recordings are acceleration times histories that have been processed to derive velocity and
displacement time histories, response spectra, and Fourier amplitude spectra. (From Campbell, K.W. and Bozorgnia,

Y. 1999. “Vertical Ground Motion: Characteristics, Relationship with Horizontal Component, and Building-Code
Implications,” in Proc. SMIP99 Seminar on Utilization of Strong-Motion Data, M. Huang, Ed., Sept. 15, San Francisco,
pp- 23—49. California Strong Motion Instrumentation Program, Sacramento. With permission.)

Ground motion database used for developing an attenuation relationship
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TABLE5.11 Coefficients for Sadigh et al. Rock Attenuation Relation: Horizontal Component

T, (s) €y G =} Cy G Cs G Ca Ly Cyp oy €12 LSt L1y
M,<65
PGA 0.182 —0.624 L0 0 ~2.100 0 3.6564 0250 0 1.39 0.14 0.38 0 7.21
0.05 0.182 —0.090 L0 0.006 -2.128  -0.082 36564 0250 0 1.39 0.14 0.38 0 7.21
0.07 0.182 0.110 1.0 0.006 2128 0082 36564 0250 O 1.40 0.14 0.39 0 7.21
0.09 0.182 0212 1.0 0.006 —2.140 0052 36564 0250 O 1.40 0.14 0.39 0 7.21
0.10 0.182 0.275 1.0 0.006 2148 —0.041 36564 0250 0 1.41 0.14 0.40 0 7.21
0.12 0.182 0.348 1.0 0.005 -2.162  -0014 36564 0250 O 1.41 0.14 0.40 0 7.21
0.14 0.182 0.307 1.0 0.004 —2.144 0 36564 0250 0 1.42 0.14 0.41 0 7.21
0.15 0.182 0.285 1.0 0.002 ~2.130 0 3.6564 0250 0 1.42 0.14 0.41 0 7.21
0.17 0.182 0.239 1.0 0 ~2.110 0 3.6564 0250 0 1.42 0.14 0.41 0 7.21
0.20 0.182 0.153 1.0 —0.004 —2.080 0 36564 0250 0 1.43 0.14 0.42 0 7.21
0.24 0.182 0.060 1.0 —0.011 —2.053 0 36564 0250 0 1.44 0.14 0.43 0 7.21
0.30 0.182 —0.057 1.0 —0.017 -2.028 0 36564 0250 0 1.45 0.14 0.44 0 7.21
0.40 0.182 —0.298 L0 —0.028 ~1.990 0 3.6564 0250 0 1.48 0.14 0.47 0 7.21
0.50 0.182 —0.588 L0 —0.040 ~1.945 0 3.6564 0250 0 1.50 0.14 0.49 0 7.21
0.75 0.182 ~1.208 1.0 ~0.050 ~1.865 0 36564 0250 0 1.52 0.14 0.51 0 7.21
1.0 0.182 ~1.705 1.0 —0.055 ~1.800 0 36564 0250 0 1.53 0.14 0.52 0 7.21
1.5 0.182 2407 1.0 ~0.065 _1.725 0 36564 0250 0 1.53 0.14 0.52 0 7.21
2.0 0.182 —2.945 1.0 —0.070 ~1.670 0 36564 0250 0 1.53 0.14 0.52 0 7.21
3.0 0.182 —3.700 1.0 —0.080 ~1.610 0 36564 0250 0 1.53 0.14 0.52 0 7.21
4.0 0.182 —4230 L0 —0.100 ~1.570 0 3.6564 0250 0 1.53 0.14 0.52 0 7.21
5.0 0.182 -4.714 L0 —0.100 ~1.540 0 3.6564 0250 0 1.53 0.14 0.52 0 7.21
7.5 0.182 -5.530 1.0 —0.110 ~1.510 0 3.6564 0250 0 1.53 0.14 0.52 0 7.21
Coefficients of an attenuation relationship
——— CALTRANS (1991) ---- |Idriss (1991b) — - modified Campbell (1991)
Spectral Acceleration Spectral Acceleration
5 Peak Acceleration T = 0.3 seconds T = 3.0 seconds
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2.12. The Simplified PSHA for Beginners

To demonstrate on how probabilistic ground motion is estimated, a simplified calculation of
probabilistic ground motion is presented as follows:

Let’s consider a simple case where only one seismic source (A) is located near the site of interest

(P).
Let’s set the PGA level of interest at the site to, say, 0.10 g.

According to the selected attenuation relationship, earthquakes with magnitude greater than 6.6
will produce PGA at the site equal to or greater than 0.10 g.

*w
: ¢

Site
Seismic Source
1 N T ¥ I 1 LENR I ] I T T T L] ]
5 i
= 4
e
= N
=
8
(&)
=
E —
8 7
c 7
N ..
& -
T
T N
E | Campbell {1981a) R
Al
| ———-Joyner and Boore (1981) M=55 |
001 1 I 1 | LIJ_ | | |
1 10 100

Distance (km)

According to the magnitude-recurrence relationship of the source zone A, the annual occurrence
rate of earthquakes with M > 6.6 = N(M=6.6) = 0.007 event per year

Hence, the annual occurrence rate of having PGA at the site exceeding 0.10g = 0.007 (event
per year)

= annual exceedance rate.
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In the other words, the return period for PGA > 0.10 g

Cumulalive Annual Frequency

10

107!

= 1/0.007 = 143 years.

10°? |-
- Hayward T
" fl) Observed
107 |- i
t  Characteristic
[ ----  sihx
* Mean
— +  95th7%
10-4 L | i | s 1

3 4 5 6

Magnifude

Random Occurrence of Earthquakes in Time: Poisson Process

Annual exceedance rate = total number of events/time period = 0.007

NI

Hi

Time,yr

Return Period = time period/total number of events = 143 yr

l = Earthquake Event with PGA > 0.10 g at the site

Given a time period of 10 years,

the chance of having such event in this time period

= 0.007x10 =0.07 = 7%, or

= 10/147

* Repeat the calculation process for many other PGA levels (0.01g, 0.05g, 0.20g, etc.).

= 0.07

= 7%
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» Draw the relationship between PGA and the corresponding annual exceedance rate.
* Then, determine the PGA level with annual exceedance rate of 0.002.
* This PGA level is equal to, say, 0.22 g.

» The exceedance rate in one year = 0.002. The exceedance rate in a 50-yr period =
0.002x50 = 0.10.

* The chance of exceeding PGA of 0.22g in a 50-yr period = 10%.
» Hence, the PGA level with 10% chance of being exceeded in a 50-yr period is 0.22g.
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Multiple Sources

/,

{ /
(\“ y

/
&

Seismic Source
Annual exceedance rate at the site P =

Annual exceedance rate caused by EQs in source A +

Annual exceedance rate caused by EQs in source B +

Annual exceedance rate caused by EQs in source C

Seismic Hazard Assessment 116



Simpllified PSHA
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2.13. Hazard Maps Developed using the PSHA

Seismic hazard probability map is usually presented by a map showing contour lines of peak
ground acceleration having a 10% probability of being exceeded in a 50-years period (which is
equivalent to, approximately, 500-yr return period).

The probabilistic acceleration and velocity maps are multiple-use maps: -

building code applications,
regional land use planning,
emergency preparedness,
insurance analysis,

Preliminary investigations of sites for critical facilities, etc.
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Seismic Hazard Map of Thailand: This map shows contours of PGA (in unit of g ) with 10%

probability of exceedance in a 50-year exposure period.
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DETERMINE LOCAL GROUND RESPONSE
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Figure 66.—Preliminary design regionalization proposed for 1976 Uniform Building Code (from Applied Technology Council, 1976).

FIGURE 1

A new seismic risk map for the United States, prepared for the Applied
Technology Council in 1976-77. The contours indicate effective peak, or
maximum, acceleration levels (values are in decimal fractions of gravity) that
might be expected (with odds of only 1 in 10) to be exceeded during a 50-year
period.
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FIGURE 16-2—SEISMIC ZONE MAP OF THE UNITED STATES
For areas outside of the United States, see Appendix Chapter 16.
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2.14. Pre-requisite Mathematical Concepts for the PSHA Process

2.14.1. Basics on Earthquake Statistics
Earthaqake Stahshcs .

Mw= A+ blog (SRL)

Mw
‘
ay '
sgL¥ Surface Ru/ptwe
Leks say we have Lewgtt. (km)
of o particolar Site of
intevest —> srL* p»
No.af.
peints poll e
_'_,,-.:.'.::; > M.,

No- vF poinfs for a Particvlar Mw - Prob °f Hat Moo,
Total  No. °f points
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S0 onb[ Pk density fn (PPF, ﬂ;q)

/////><N

Mean
Meph an
507. percen ble

Somehmes the EQ data maa also  leoke lke this

Cumvlahive :De"ﬁft Funchon ¢

Pro% t’ a0t é Z m(‘&gYnfe ~ScPF CF“J
max l

h EG we wostly not interested in  probabilfy or $py
when a parfiwlay pavametes Is = Some nwmber, bt

e ”
we  mostly cave abovt When & pavameteY “exceeds
of “domw't exceedS” @ number. So CDF helps us

in S .
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Now,

SRL
Actval
. ~ M
The wmean Mw COY&SPNJAM& to SRLAd'val 5 £ Eaiion P

So one may tink that £ Ok- But ,‘f we
considex the  PDF, (the Spread of adval datn)

N Pxob Mean

£
7. -6w s X — X

go M s MC? Mcan:un Mumean
S) SD

CDF  gives  prob <M<Mwnceme‘9 —Pop. Of non exceedesucy .
SO Prob. °:f exceedance = |— CDF(Z) v

ol

2.14.2. Logarithms
if a? = N wherea # 0or1,thenp =log,N

“p” is called the logarithm of N to the base a.

Laws of Logarithms

LogaMN = Log,M + Log,N

Log, M/N = Log,M — Log,N
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LogaMP =p Log,M

Change of base of Logarithms

Log, N
Log,N = 9p
Logpa
Some useful relations:
1040910V = N

Exp[Log.N] =N

1

L = —
0910¢ = 159,10

2.14.3. Probability Theory

Probability: a nonnegative measure which is associated with an event
0 < Probability <1

P(impossible event) =0 :i.e., no chance that the event will occur.

P(certain event) = 1 ; i.e., 100% sure that the event will occur.

Conditional probability: The probability of an event may depend on the occurrence of another

event.
The conditional probability of E1, assuming E2 has occurred is denoted by
It can be shown that

P[Ejand E,| = P [E, /E,]. P [E,]

Statistical independence: If the occurrence of one event does not affect the probability of
occurrence of another event, the two events are statistically independent.

Therefore, if E1, and E2 are statistically independent,
P[E|/E,] = P [E4]
Then
P[E;and E,| = P [E;]. P [E,]
Let X be a random variable

Suppose that we have N sample values of X: {x, x5, x3, ..... Xy}

N-ooo

Sample mean X= %Z?lei — E[X] the expected value of X
_ N—->oo
Sample variation Sz = ﬁ N (x; —X)? —Var[X] the variance of X
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E[X] = Z x.P[X = ]

all x

Var[X] = Z (x — E[X]?.P[X = x]

all x

In this case, all x means all possible numerical values of X

75;01 P'{Obabu(,l?a Theovem . Totd Prob of a System

— Sum "7€ individval
Probab///h&f from each
Lonf’YlbUhVLg- faYlf

PLY] = Z PLY[Xi]P[Xi]

=]

2
Prob. 0=f Y= (Prola. 0{ Y svch that~ Some
X valve is equal to Xp X (motip))

the prob. of )(:X,‘)

Seismic Hazard Assessment

128



How fo Com[)ute individvad ~ ProbabilitieS 2 —» PDE

H*)
Uniform Distribvtfion , f(x) :bJ—q

PDFs -x-¥)% ., a b ’
Normaf 7 7&)— a'f-ﬁ s (60
Lognormal — « TA,
g 7((x) X v
*foo‘
- lnx In
<ep (-4 (i)'
In)(

A,

’ 1( we intexested n P (exweob'na. or not &\fcceo(iv?) s CIF

Fix)= j,ﬁ(x) %(1 KL) %{(-—-Z

p(x<x) —> CIF 45=§Wmmi;”
p(x>%) =1—Fwx) <IF

2.14.4. The Poisson Process and Poisson Distribution

Suitable for the probabilistic modelling of many physical problems which involve the possible
occurrences of events at any point in time (or space).

Earthquake occurrences, Traffic accidents on a given highway, etc.
The Poisson process is based on the following assumptions:
a) An event can occur at random at any time

b) The occurrence of an event in a given time interval is independent of that in any other non-
overlapping intervals.

c) The probability of occurrence of an event in a small interval At is proportional to At, and
can be given by vAt, where v is the mean rate of occurrence of the event (assumed to be
constant); and the probability of two or more occurrences in At is negligible (of higher
orders of At).

On the basis of these assumptions, the number of occurrences of the event in t is given by the
Poisson Distribution:
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Where
N, is the number of occurrences in time interval t

v is the mean occurrence rate; that is, the average number of occurrences of the event per unit
time interval.

Therefore
P[no event occur in t] = P[N, = 0] = e™**
Also, it can be proved that
E[N;] = vt
Var[N,] = vt

Detailed Derivation of the Poisson Distribution:

[Ntygr =n] =[N =n and no occurrence in (t, t + dt)] or
=[N,=n-1 and one event occurs in (t, t+ dt)] or
=[N, =n—-2 and two events occur in (t, t + dt)] or

P[N;_q¢ = n] = P[N; = n] P[Ng; = 0] + P[N; =n — 1] P[Ng, = 1]
+ P[N, =n—2] P[Ng = 2] + -
On the basis of assumption (c), we obtain
P[Ng =1] =vdt
P[Ng =2]=0
P[Nge =3] =0
Hence,
P[Ng4t =0]=1—-P[Ngy =1]=1—-vt
(since there are only two possibilities: either N;; = 0 or 1)
Introducing (c7) and (c6) into (c5) yields
P[N¢yq: =n] = P[N; =n] —vdt. P[N, =n]+vdt. P[N; =n—1]
Using the notation P[N; = n] = p,(t) , Eq. (C8) becomes

pn(t +dt) = pn(t) —vdt. pn(t) + vdt. pn—l(t)
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n dt) = n
pn(t + ;)t @ _ (Pns(t) = pu(®))

Therefore, in the limit as dt — 0, we obtain the following differential equation for p, (t):

d(pn
W) _ @ 0]

It should be noted here that the Eq. (c10) applies forany n > 1

For = 0, the preceding derivation leads to

dpo(t) _
dt

—VDo
The general solution:
Po(t) = coe™*

The initial condition:

po(0) = 1.0
Therefore,

po(t) = e
Forn = 1, the Eq. (c10) leads to

d
Pt=v {po(t) — p1 ()}

d

Epﬂ =ve Vi —vp(t)

The initial condition in this case is
p1(0) =0
The solution for (c13) and its associated initial condition (c14) is

pit=vte

Repeating the process for n = 2,3, ....., we obtain
_ 00"
()= ~——e™
EINI= ) n PN =nl= ) n.pa(®)
n=0 n=0
_ Z n. (vlt)" ot
~ n:
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2x (vt)? 3 x(vt)?
2! TR,

ov?  we)?
TR TI

=e "{OX1+1xvt+

=e Vixvt{l1+vt+

E[N;] = vt

VarlN = ) {n—EINIP . PIN, =n] = ) (n=vt)2 p(®
n=0 n=0

Var[N;] = vt
2.15. Uncertainties in the PSHA Methodology

Two  Generad T&Pes of Uncertainty
m
r |
Aleato 4 Uncer tai nfy- e }ais{ewuc Uqcerfwnfy

(inhereat — deals witt fients: wlifs w Dok
Under.ff‘andfﬂg O.f hav fo

Yandom vaYl.ab'mZ" In ;m vepresent the system.
M, R, M mf’C"S'*a- eic. e which GMPE wovid
(based m scatteved dala) . '
e best rzfrdwt a parheslay
we cannot avaid if . ﬁwu)
J (Not inhevent) . Can be
: t oy
ol Wt it witkin e oy ool
L,as,ar(d mfe.dmﬂ d&l#- [¥erate J
fam?é’. all  possible valued accomnt uxinj
and, rolkiply vite Ccmra/aom‘«lg -
ol Lpg,fc [vees .
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2.16. The Treatment of Aleatory Uncertainties in the PSHA
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~5 " )"/’\ %
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s.itﬁ Sl*‘&/\ site
‘ A,
R T-f (Y) Ny
. R

Ys

R

2) Size Uncertainty,  How big the EQ will be? hendled using.

2nd Sonc
( unuvfamfa)oF

“gecorence laws”
(How offen an €a wmagnitde vepests iself )
Recupyene Llaws

r = )

Slip-dependent laws Gutenberg - Ricnteviaws Chavackerishic
F ¢ lows

) = Annval yate 0( exceedlnee
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[The Basics of Seismic Risk Anadypes : Eemsjzj S

For fle well- kygun Guﬁucbv% ~-Rickfer Wmslup

/Oj Non)y=  a - bm (4)

Wkt Nem) s fla manber of earllgualees foan. gyoase haviing.
maz?m'hxd&s greatey o M

10

b

i the number of eallqualiss adsve maguikide 2erm,

desoncbes The velakive rale of occwvtance o canllapales
with duflevesut Maﬁw}‘uo(té.

Iﬂwrfomﬁﬂg I imt ok MAX M ma?wlud:zs Mo st 1 gy
We Gaw dovive o prokulility density functin thal gives G
probability that , if am azdﬁz{,u»kﬂ occares , it wall be of magnifude M.:

g = kperp(-fin=me) , mo<m < My

(5)
whoe  p= b Lago) , B {
R arSarEo oy
{M(""ﬂ 4
|
% B CIESESY
Mo Mo~ M
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CL\-LCK/ Examin.

The omuusl vate of eg occwmnamtc AW“& wg > Mo /s
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a —bmo 2
- : Y
= 10 . 10 ;o‘)mo
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(Grovnd Motim Model :
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(0. 9)
PixszMr] = fpome)x +)
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| f
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We cau the above eq. in the Hﬂmw‘w& mnww.ﬂx%td form -

xR
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£¥ M)
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Foyr Mwa‘r,a(z Souresy

N Source

A[X>x] = Z A, [x>%] (12)

Whot  Nogage 75 the total nambex of faull and oneal seurstd.
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2.17. The Seismic Source Characterization for the PSHA

How to develop a  Seismic Source wodel  for

PSHA ¢

Q) Hive an  engineering geologist to buitd yar owm rodel

b) Use Pubumla. availoble  Seismic Sovice wmodel (e-g.

vS6S moded for US) -
' — becavse bult for

L—?Sﬂzﬁf’j pooy  yesolution JZP b 1 5 ::'(E?‘m
'—?M“”d F""(“S in US.

donst appear A3

individwal Sovvce§ —> instedd

maa, ave yequeuted using-

omidg.—> odly adive favts get
ba(,kgmmd B Ma?awn sejsmic  Sovrce
charackei o) in

Pubﬂjmua available models.

c) Use fhe vesvlls of  previovs privake. stodieg, if owailable

Su‘swu’c Sovvce Unc_ewtw‘nta,_ .

PSHA acounts for all oncertainties.  But yptilk
YWOW, we weve assuming thal” we aye [007.
Confident with ovr Seimic  Sovrces.

what if we are not Suve  qboyt our Seismic
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them 2
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2.18. The Treatment of Epistemic Uncertainty in the PSHA
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Lo Zc
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fog G
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2.19. The Effect of Local Site Conditions

MARRET AND ) MASON AND
GUERRERQ STATE PINE STREETS )
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E San Francisco Bay

1,, Rick atea
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MAXIMUM PREDICTED EARTHQUAKE MAGNITUDES
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Fig. 11 19/5 USH.Ge’uI()q:cul Survey ititrozonation mup

ra mu:l San Fran
j i3 ancisco, showing remarkable
correlation with observations after 1989 Loma Prieta

earthquake.

2.20. The Modified Cornell Method for the PSHA
The method was first developed by C.A. Cornell (Stanford University) in 1968.

It was then used by S.T. Algermissen et.al (USGS) for making a probabilistic acceleration map of
US in 1976.

The map was later on used as a basis for the development of the US seismic zone map in the
“Uniform Building Code” from 1988 onward.

The analysis method is currently used world-wide.

2.20.1.

b)

d)

e)

Basic Assumptions
Earthquakes occur within the zones of seismic sources.

Within a source zone, earthquake epicenters are uniformly distributed spatially, while
earthquake focal depths are equal to a constant (this constant is usually set to average
value of focal depths of past earthquakes within the source zone).

Earthquake occurrences in different seismic source zones are statistically independent.

Earthquakes are generated as ‘point sources”. In reality “line sources” or “area sources
may be more realistic”, especially for large earthquakes. However for practical reasons,
the point source-model is considered to be an acceptable model).

Within a source zone, earthquakes randomly occur in time according to Poisson
distribution ( the mean rate of earthquake occurrence is constant in time)
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(From real observations, the occurrence of large earthquakes appear to be “Poissonian” while
small earthquakes often are not. However, the ground acceleration associated with small
earthquakes are, in most engineering purposes, negligible).

f) Peak ground acceleration at any given site depends on the earthquake magnitude and
source-to-site distance. The acceleration can be computed by an attenuation model. (in
the following, the ESTEVA model will be used).

g) The average rate of earthquake occurrences can be derived from the magnitude
recurrence relationship N(m), which is given by the Gutenberg-Richter model:

Log N(m) =a—bm

The model is sometimes called “the exponential model”.

2.20.2. Theoretical Derivation

Considering a seismic source zone of total area "S" and a small area segment of area "ds" as
shown:

//?\f, a source zone
M T Site
._ ‘ 1

On the basis of the assumption (g),
the frequency of earthquake occurrence within this source zone is given by
N(M) = Ny Exp [ M]

N(M) is the average number per year of earthquakes having magnitude > M and epicenter
located within the area of this source zone.

N, and B are constants; they are conventionally obtained from an appropriate statistical analysis
of historical earthquakes.

(The constants for a source zone are different from those for the other zones; the constant
depends on the seismicity of the source zones.

On the basis of the assumption (b), the average number per year of earthquakes having
magnitude > M that occur within the area segment ds, denoted by n(M), is then given by

ds
n(M) = N <

Now, suppose that an earthquake of magnitude M occurs within the area segment ds.
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On the basis of the assumption (f), the peak ground acceleration at the site of interest, denoted
by a, is then given by

_ 5600 Exp [0.8M]
B (R + 40)2

a is the peak ground acceleration  (unit; cm/sec2)
M is the magnitude of the earthquake in Richter scale.

R is focal distance (km)

; _ .
Epicenter ! d ' %/ Site

N [N NV ANNNT /7

” \

\

Focus o
(hypocenter)

R = \d? + h?
d is the epicentral distance
h is the focal depth of the earthquake

* In this case, where the earthquake occurs within a small area, the epicenter can be assumed
to be located at the center of the small area with losing the accuracy.

Let @ can be a level of acceleration of interest.

The condition that the peak ground acceleration at the site, a, exceeds the acceleration level of
interest, d , is denoted by

a>da
Substituting Eqg. (3) in Eq. (5) yields:

5600 Exp[0.8M]
(R + 40)2

@ (R + 40)2

Exp [0.8M] > 600
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d (R + 40)2
logso [a ( ) /5600]

logip €

0.8M >

or
M>m

where
1
m= C—{loglod — ¢y +2logqio (R +40)}
2

¢, = logqo (5600) = 3.75
c, = 0.8logqo (e) = 0.347
That is to say (a > @) is equivalent to (M > m)
The equation (9) says that

“If an earthquake occurs within the segment ds and its magnitude is greater than “m”, then the
peak ground acceleration at the site of interest is greater than “@”

The average number per year of the events that (a > @) , denoted by v , is therefore given by
ds ds
v=n(m) = N(m)— = No Exp[—pm] —
] B ds
= Ny Exp [C_ {logloa —cy +2logio(R+ 40)}] 5
2

ﬁ 2 log,o(R + 40)

logqoe

—Nd x['glogloa]Ex Bci
075 "P108 Togreel P08

logelo] Exp
ds B_ 2B
=Ny — S Exp [0 3 log, a ] Exp [logelo 8] Exp[ log. (R + 40)]
=Ny ? Exp [loged_B/O-B] .1OBC1/0-8 . Exp [loge(R + 40)_23/0-8]
= Ny % a "os x (10109105600Y og x (R + 40) F/os
= Ny ? a "o x 5600708 x (R +40) " os

b
y 4 ( 5600 > 08
Vv = JR— R
® 5 \a (R +40)2

Hence, the occurrence rate of the event (a > @), as denoted by v, is function of

Ny, B (seismicity of the score)
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ds/ s (the area ratio)

R (the focal distance)

a (the acceleration level of interest)

Assuming that the probability distribution of earthquakes in time is Poisson distribution
(Assumption (e)), it follows that

P [no event that a > @ occurs within a time period of T years] = Exp[—VT]
or in the other words,
Pla <da inaT-yrperiod] = Exp[—vT]

So far, we consider only the effect of earthquakes that occur within a small segment ds, but from
now on we will extend our analysis to integrate the effect of earthquakes that occur in the other
segments in the source zone.

Suppose that the seismic source zone consist of J (Small) segments as shown. These segments
are treated here as independent sources.

/0y A sovrce Zone
e

Let a; be the peak ground acceleration, at the site, which is generated by an earthquake within
the segment "i"

Let amax be the maximum value of a; fori = 1,2,3 ....,]; that is

{@max = Mmax [ay,ay, as, ... ..... 4}
Hence,
P [amax <ainaT —yr period] =P [a; < dina T-yr period
And
a, < dina T-yr period
And

a; < d@ina T-yr period]
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By treating each source segment as an independent source, Eq. (13) becomes

P [amax < @in a T-yr period| = P[a; < @in T-yr period]

where the subscribe "i" denotes that the parameter to which it is attached is directly associated
with the source segment "i".

Let P, be the probability of exceedance, that is, the probability that a,,,, will exceed a in a T-yr
period:

P, =1— Plapg, < ain T-yr period]
Substituting Eq. (14) into Eq. (15) , we obtain

]
P,=1- Exp —TZVL-

i=1

J
T v = log.(1-P)
i=1

1=

]
log,(1—P
wazo

i=1

Introducing Eq. (10) in to Eq. (16) we obtain:

] B

ZN ( 5600 > /os ds; N loge(1—PF.) 0
0 \a (R; +40)2 S T

If the values of P, and T are specified, then the equation (17) is merely a polynomial equation in
terms of @ with non-integer coefficients, and @ can be easily obtained by numerical iterative
procedures.

In practices, the value of & which corresponds to P, = 0.1 and T = 50 yr is typically chosen for
the design of ordinary structures; that is, an ordinary structure should be able to resist the ground
shaking with peak ground acceleration that has a 10% chance of being exceeded in a 50- years
period.

This peak ground acceleration is, in fact, equivalent to the peak ground acceleration with 475-
year mean reoccurrence interval (or a nominal 500 year mean reoccurrence interval).
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In the case where there are more than one source zone,

Source Zone

' Source Zone

The probabilistic peak ground acceleration can also be evaluated by the same probabilistic
technique. The Eq. (17) will have to be changed slightly:

J
Z ZNO( 5600 )8/0.8 ds; N loge(l—Pe):0

~ ' > S =
Zone A,B,Cc,D \\i=1 a (Rl + 40)

2.20.3. Example Problem 1
Given two seismic source zones A and B and a site of interest as shown in the figure below:

Given the sources’ characteristics

Zone A Zone B
B 1.6 1.4
N 3000 300
N(s) 1 0.27
Ng) 0.008 0.004
d 150 60 km
h 20 30 km
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d,\= 150 K
B
_+
dB = 60 km
Site

Assuming that the ESTEVA'’s attenuation model is applicable here.

Determine the expected peak ground acceleration at the site in a 50-year period with 10%
chance of being exceeded by considering

a. The effect of earthquakes in zone A only,

b. The effect of earthquakes on zone B only,

c. The effect of earthquakes in both zones.
Solution:

Focal distance:
R, = /1502 + 20?2 = 151.3 km
Rp = /602 +30%2 =67.1km

Occurrence rate:

5600 \ “os 5600 /o
vy = Noj |— = 3000 x
i (R, + 40)2 a (151.3 + 40)?2

70.2
dz

5600 \ “os 5600 “os
vg = Nop | — =3000 X [——"
i (Rp + 40)2 a(67.1+ 40)2

Vyq =

85.5

VB = ===
a1.75
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log.(1—P,) _ log.(0.9) _

—2.107 x 1073
T 50

For the case (a):
702/, - 2.107 x 1073 =0
d = 182.5 cm/sec?
For the case (b):
855/ 175 — 2107 x 1073 =0

d = 429.8cm/sec?

For the case (c):

70.2 855

-3 _
?4'%—2.107)(10 =0

a? — 40579 a®?> —33317.5=0

d = 471.6 cm/sec?

y = a% — 40579 a%%% — 33317.5

2.20.4. Example Problem 2
Suppose that a site of interest is located near an active fault as shown in the figure below.
Given the fault’s characteristics
No = 3000 <N(8) = 0.008>
p=16 N =1
hq, = average focal depth=20 km
Assuming that the ESTEVA’s attenuation model is applicable here:

Determine the expected peak ground acceleration at the site for
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a) A 50 year exposure period with a 10% chance of being exceeded,

b) 1250 year exposure period with a 10% chance of being exceeded.

Most equations shown in this lecture can be applied to this case provided that

d . d
= is changed to =
S 2L

And discrete summation is transform into integration
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Therefore, the Eq. (17) in the lecture is modified into
ZfLNO ( 5600 >ﬁ/0-8 d_x+ loge(1—F.) _ 0
0 a (R + 40)2 2L T
where
N, = 3000

B =16

h =20

L =200

R = y/d? + h? = /1502 + x2 + 202 = /x2 + 22900

Introducing Eqg. (2) into Eqg. (1), we obtain:

B L
Ny /5600y /08 1 log,(1—P,)
T<~) Xf—Zﬂdx-l_#:O
a 5 (R +40) " /os
200
4.70 x 108 1 In(1-PR,)
~2 j 2 dx + —— = 0
a \/27 T
5 (VxZ+22900 + 40)
#“ In(1-PR)_
a2 T

For the case (A),
P,=0.1, T=50

41 In(0.9)
a2 ' 50

0 = d = 139 cm/sec?

For the case (B),
P, =01, T =250

41 1n(0.9)

¥+2—50=0:d=3120m/se02
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2.21. A Quick Comparison of the PSHA Methodologies

Simplified
analysis in this
lecture

Algermissen’s US
seismic zone map (1976)
-ATC

Pennung-Ade’s Thailand
seismic zone map (1994)

a) Seismicity
model of source
zone:

Magnitude-
reoccurrence
relationship

Earthquake records
(database)

Number of source
zones

Number of
segments

Exponential type

w/o upper bound in
earthquake
magnitude

1
J

Exponential type

with upper bound in
earthquake magnitude
(Sharp truncation)

Instrumental earthquake
records,

all records are corrected
for completeness by the
J.C.STEPP’s methods

>70
N.A

Exponential type

with upper bound in earthquake
magnitude (Smooth truncation)

80-yr instrument earthquake
record,

all records are corrected for
completeness by the J. C.
STEPP’s methods

11
149

b) Attenuation
model

ESTEVA model

Schnabel-Seed model
(1973)

With some modifications

ESTEVA model

c) Probability

Modified CORNELL

Modified CORNELL

Modified CORNELL method

model method method
d) Results dfor P, = 0.1and d and  for dfor P, = 0.1and
T = 50 years P, =0.1and T = 50 years
T = 50years

e) Seismic zoning

Based on EPA

Effective peak ground
acceleration

(see Figures)

Based on peak ground
acceleration (@)

Zone
Zone /g Factor
)
4 0.3up 0.4
3 0.2~0.3 0.3
2B [0.15~0.2 0.2
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2A 0.075~0.15 |0.1
1 0.025~0.075 (0.0
0 Below 0.025 |0

2.22. The Deaggregation of Seismic Hazard

The hazard curve gives the combined effect of all the seismic sources, magnitudes and distances

on the probability of exceeding a given ground motion level.

Since all of the sources, magnitudes, and distances are mixed together, it is difficult to get an

intuitive understanding of what is controlling the hazard from the hazard curve by itself.

To provide insight into what events are the most important for the hazard at a given ground motion
level, the hazard curve is broken down into its contributions from different earthquake scenarios.

This process is called ‘Deaggregation of Hazard'.

5% Damping
10-1 [ Y LR | T L BN & - T rrrrr T L IR ~]
[ e ICR soUFCO 1 F —— ICR source ]
[ ==~== Subzones NSZ, NNR, ¥ SSR ] [ ---- Subzones NSZ, NNR, & SSR ]
= +  Source NMES ] L — - Source NMES

o
L]
"~

Annual Frequency of Exceedance
o

10-4 ) Lol 4 AN

01 .02 05 1 .2 S 1.02 L5 1 2

5 1 2

Peak Acceleration (g) 0.2-sec Spectral Acceleralion (g)
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e Total Hazard

Hazard from Individual Seismic Sources:

= === Concord-Green Valley fault
— — Bay zone
Santa Cruz Mins, zone

SA

PGA

— + Hayward-Rogers Creek fault
~—— X San Andreas fault
—— # Calaveras fault
—— *  Sargent fault
T=0.30 sec

107!

o
|
»~

1073

Annual Frequency

1074

heded L L L1

Example of contributions of various seismic sources to the total seismic hazard at the site

Acceleration in g

Charlotte NC Disaggregated Seismic Hazard

for 0.2 sec Spectral Accel., 0.356 g 80

PE =2% per 50 yr. Hazard radius 800 km, DeltaD=10km 7 2

Mw: average, weighed by exceedancs rates 67

6.4

61 M

r 58

+ bb

5.0

E & 2B
a2 - 1—5—;—\’ a2
40 4 a0
8- - s - a8
36+ : < - 26"
S | =g~
F2- A S - a2
o
30- o 0 o - 30"
o < 500
28 - 2 - om-
& = i = = = % &

[ETN /1310944 | cranotte NC PSHAD 2 sec SA(D.356 0), radius =500 kM 10 include NMSE . ID{SA) UNrestricted. ¥iew from South. hmass 63 106 Cities: yellow cinks

Seismic Hazard Assessment

170



Charlotte NC Disaggregated Seismic Hazard

for 1 sec Spectral Accel., 0.1403 g

PE =2% per 50 yr. Hazard radius 800 km, DeltaD=10 km
Mw: average, weighed by exceedance rates

NMSZ M8 influence at 760 to 800 kan

SN

oo
oI =m~MO
<

e nenen
o

3|
i
il &
il 2
a2- TS l- g42°
220 I7?7\42
H
i =
1
40" il - a0"
I tH
i
i il
i it
38~ L _|{H - a8
Ui
4]
36 - 26"
34+ - - 24"
32+ - I 32°
o
30+ =g o l- 30
o 500
kKm
28° = l- o8~

[SI0LN Jul3109:00 | Chariotte NC PSHA {se0 SA (0.1403 g, radius =500 kM 1o include NMSZ, I0Q(SA) unrestrioted. Vi w Trom SOUth, hraxss M (M6 Cities: yellow circ ks
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e The deagqre}wﬁ'm /5 nnuca,b")’zd such thalt /F sums fo amu/% for
all scenanio grovps.

Dea%[ I = le wnditional pmba.lniiﬁll\ of Ua W molron
be«'ng_ ?w.zmm by au MW witt. magm'Judt

in Thae W M1"'Mz and dfsfaua /l(—ﬂu W R,’Pz.
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’]9"0501"7"4'/} Q“’d" (@2 100yr s 1000 yr rd'umrwods) ol
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o The meaw ma?w}{«dc ool distamee :

nSewree Mumax 0
P—/‘ = i;l /\//(MO)/ /m]/a(m) ]/L;(T).P[XQX/mlr]dmdr
m=Mo Yrz0
ALx>x] Cte)
s n Seunel me o
Ke 3> N,‘(Mo)j /r £,om. £.0). o x/mr] dmd r
A [X2x]

(17)
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x
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Amoum‘_af Rick associated with

each geismic  Sovvce

K\/L_/\

H-ub_ayd cwrve for Deaggregation plois
. dj\/idvqu sovrcél <])¢a)m/)oje @ Parﬁwlqy

Anwd />oint‘ on hazard
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for me
Retvom
Pccﬁad]

Pioviles mean M,R Combinaion.
Mode M,R '
(5,'7l< la1;eSt'
Con{'r:'bzm'nj S'ceno.wb)

2.23. Probabilistic Ground Motions in Earthquake-resistant Design

For ordinary structures, it is not practical to establish design criteria at such a high level that no
damage will be sustained even in the event of the strongest possible earthquake.

It is known that large earthquakes occur much less frequently than small earthquakes and the
probability of experiencing the strongest possible shaking is very small compared to probability of
experiencing moderate ground shaking at a site.

It is cost-effective to accept extensive damage once per 500 years, “acceptable risk”

The expected performance of buildings in modern earthquake-resistant design codes are:
Resist a minor level of earthquake ground shaking (SE) without damage

SE = Serviceability earthquake—50% probability of exceedance in 30 years (43-year return
period)

Resist the design level of earthquake ground shaking (DBE) with damage (which may or may not
be economically repaired) but without causing extensive loss of life.

DBE = Design basis earthquake—10% probability of exceedance in 50 years (472-year return
period)
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Resist the strongest earthquake shaking expected at the site (MCE) without collapse, but
potentially with extreme damage.

MCE = Maximum considered earthquake—2% probability of exceedance in 50 years (2475-year
return period)

Seismic Design Criteria of Major Dam Projects

According to ICOLD (International Commission of Large Dams) Bulletin 72 (1989), large
dams have to be able to withstand the effects of the Maximum Credible Earthquake
Shaking Level (MCE).

This MCE is the strongest earthquake shaking level that could occur in the region of a
dam, and is considered to have a return period of several thousand years (typically 10,000
years in regions of low to moderate seismicity).

MCE = Maximum considered earthquake—0.5% probability of exceedance in 50 years (about
10,000-year return period)

Probabilistic Ground Motion Parameters: PGA, PGV, SA

Traditionally Peak Ground Acceleration (PGA) has been used to quantify ground motion
in PSHA. PGA is a good index to hazard for low-rise buildings, up to about 7 stories.

PGV, peak ground velocity, is a good index to hazard to taller buildings. However, it is not
clear how to relate velocity to force in order to design a taller building.

Today the preferred parameter is Response Spectral Acceleration (SA).

While PGA (peak acceleration) is what is experienced by a particle on the ground, SA is
approximately what is experienced by a building, as modeled by a particle mass on a
massless vertical rod having the same natural period of vibration as the building.

SA = The maximum acceleration experienced by a damped, single-degree-of-freedom
oscillator (a crude representation of building response).

Max. Earthquake Force in the Building = Building Mass x SA

Mass on a

Building Response :
Leaf Spring

W/ ~5% Damping

( The Free
Oscillation

Figure 1. The response-spectrum value is the peak motion
(displacement, velocity, or acceleration) of a damped single-degree of
freedom harmonic oscillator (with a particular damping and resonant
period) subjected to a prescribed ground motion.
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Time (sec)
(el 20 l T T T T
15 L  Relative Displacement
= Response Spectrum
= 2% Damping
a 10+ _
o= _—
| ' /)
0
0 1 2 3

Period (sec)

FIGURE 6.3 Construction of a response spectrum. (a) earthquake acceleration time history
(El Centro, California 1940) used as input, (b) relative displacement response of a 2%
damped oscillator with a natural period of 0.5 seconds, (c) relative displacement response
of a 2% damped oscillator with a natural pericd of 1.0 seconds, (d) relative displacement
response of a 2% damped oscillator with a natural period of 2.0 seconds and (e) maxima
of b, ¢ and d become points on the 2% damped relative displacement response spectrum
(after Chopra 1981).

Seismic Hazard Assessment 176



If we look at the displacement response, we can identify the maximum
displacement. If we take the derivative (rate of change) of the displacement
response with respect to time, we can get the velocity response. The maximum
velocity can likewise be determined. Similarly for response acceleration (rate of
change of velocity) also called response spectral acceleration (SA).

20
15}
g
o 10f
5.
0=
50
(-: wy
g 40} o =
2 30} "gﬁ
[
20t
10
0
1.5 =
—
1
w 2
< S
0.5H =
[=]
00 1 = 2 3
T, sec

Seismic Hazard Assessment 177



2.24. Uniform Hazard Spectra
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2.25. Conditional Mean Spectra
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{a 7‘Uge 1 SA  value at e ,pew'od pr nterest .

—> W wed o “Typel " RS associated  with the
Speaped large ampitvde g valve of a gingle T,

— CMS maintains the  probabiliStic ¥/gor @ psHA

—> (eAs Say we _are interested in T= lsec

PG CA (Lsgec) = O-‘f(f)i
0.42_ /- e *\p {
e L
oo deaggreg ation
fo Rnow  yelationship bjw
R M and £ .,Cov SA(1se¢)= 07‘1

< contyiblution Y rl/\ll«a.f M R__EQc T
/..huonfzdu @ P?’Ovlbvf(lﬁi —
"y VW L min__ contribohom f
v Z’& = J

\
&U"’Q’ o 3

=B
L U"/}‘é \/
Jé'?f p2)

De@avegahbn also /mrowdp.c Mean (R,M, &,)
ef  2:2Kkm | 903 | 2.02)
Nows o medion Fjﬁolféf‘ed Qf;acHUM wi o HyfS
R,M  can  be very low  +han Huk UHS.
AN\~ UHS
N R ""’Lﬁf‘,"nﬁmeﬁﬁff it
Fram o(eoﬁﬁveﬁafvm at- SA( ISec) 0'(1(3_
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Thi’s a(.’f,/’erwaz Y Qluanfﬁ'?’d 6,‘4 g.

g€ =no 9 g.mdard DPeviations by which
a 34\/12«‘/\ AnSA  valve 0‘4#05’ ~Fyam the
mean ’bredfd'eoe valve for a grven
R,M
g= laspct) — K (MRT)
Gl )
€ tells us of the ;nouno( motions  with e 0‘?g SA,

hew  many S%amimd deviatbonS rs  lavaer fhan :%e
2 [ ot
medan 'prea(vcbm are thede &M A yvalues.

E=2 pigant .. we o abost 2 | ok Devw larger

then  median ppred: chonS on average Wit these
L«?gh amp . ;wovm!l mot'ons .

£o

/ N VHS Ll%/50 years)
//’»\\ A/‘? Q0"+ (Spectrom from mean ;\4.Q,)

/t//r \\\: for _Mean M,R
5 ¢ §—<’ F’Mdeagﬂ egatron
i Y Sec :

UHS 5 not an  “Auevage ®
)

ge " Spectrom  comespondivg
o Scenavio 4 EQ event. It s much lcdgey than
mediom  gpoctrvm.
LdSSa\:lL
€.=32 inditates that  we <A (15) = 0.9
Caused b:{ GMs that  are
laYgeY ﬂmn mean _GM S

(S

on aueia%e 2.0
peditled ﬁm'n casvad event.

UHS 15 identical to <2r+mean>RS.
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I?E we plof indindval $7pe¢+m 0? 20 6ms ol wit
same ‘mean” R omd M, e will See a (ot 9)
§cod;( eY- :

We can  Select that one Spectra " wluth exactly
have SA(Isec) = 0:9 2 means £ haS i

2= 23 5

Bot 7t s not  “Equally " large at oll offiex
period§ <a§ VHS) . so U(/H_( an 7e,/914mfa(71/e of
individval  grovnd motim Spectra-

1P Mzmoan (7.03) and R= 13-2km wag the

g only  EQ ocurring on St

UHS = /'den%‘m,e - Q.02 O+ Spectrm
for Mean
A (/ﬁ—mean +20” R and i
. 75

0 . " A
yndwrdUX ™ [phsewed SpPectiom)
< Spe chrom ( i

f
i
’/W \ \\WMQML spectrom:
ot 1 L

(predicted spectron)

ISec 2 Sec.

3 1= epsiton =€  valwe vavrging . by GMPE
1 7 7 %4

c . (log ¢ obsewed Sa — mean G 1 & predicted <4)
St. Dev 6 Rog g A (brovided by GmPm)

N ow we o guwven £ (41 3%e) = Q0L =D
we  Can_yon (005 S} 4m and plOt their Specva
—fogeﬂ-ae} ond  pItR  thedy £g ot Affevent Tc.
y mean é(_ana T):
. o, T = Covrelati'on

IO . S o) e

e [ X & (4 sec)
e(s) €us) determine . Dev

‘FDY each ¥ i
also

Seismic Hazard Assessment 187



USM} ¥ we  Can  findd #)e mean £ and_ St.Dew

= 076 £ af ol be)’l “odS CDnoUh'dr)éd on A,

tavget g at T *
ot i

P ;
e penod —of Py,‘mqrd intevest:

= | skt buhon distribobon 7

¢)_ghuen

6} é(as) { tL“ “’/ 174
i qven g((9)=2 i) L) B(A5)e] 0
/"S") il '/"’ E(O- )—s) e M\ ¢

2
[T 2 / =
A merm ///‘ﬁ/\l
&’(_&s)&u@ﬂégs) e 8&&753/
T o &0

lef say we get both meansard §.Devs g g5 at all Ts.

Vmesn & (25) = 6715 E(IS), St-DEEe-05

mean @ (0:2%) = 0.4y € (1s) =0M4%2=0.88

\
«

3

No W
T L cono{,ﬁOI’)a,Q MEan SP@GIYWV)
/Té ?\/ za .
ch | g e
Y Sog e s M=T7"7R=Txim
02¢ 1 Sec o
£ (deay 2 s ovy (Condihonel )fé; /

we determine  what  value 9 ¢ 5 expecked, |

e at  othey Tg I'7f ot | sec ik valve s Lo

P gt 38, 8 hpy/‘/ylv

T /w CMS T A stapeuEETe (A97RS

A N
(}S € (v u 4 v ¥

i e
//W “’/\ﬁ‘ CMS

rdFdoad
i d nc‘?afv;fw"’l
Now
We (an solect  and Scale MS 1o match

thig cmS .
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Two  wagg fo  Secale  GMs  (Twe options)

(a) Match  both mean  and Standard deviation

At any  gven T both  mean and 0~ or

VU
grovnd _motien Sped7a  Should be watched  Loth

meéan and o 6’£ Candl-h'ﬂ’ld mecin leednm

() Match only  mean

Ceale _all _ams  glwch fo thal they bave

SA(450c )= 09 3 (Target, conditiomed) . Dont

muclhh  woried abouf var/abr,&v‘;;

(@)= (ondihomal  Spectrim
k) — Mean S’ped'YUW)‘

,S’/na,be aq __CmS Change  w-7-t  probabitity <)
T v L (v, I

e xceedance .

[ 7{ Cavse & M and R Chmo‘;e with  yeturn
/9€Y100L brob ) exceedance ) tHe S‘Impe CQ

CMS chm,ae, I/.ﬂ A not chan;f«mq +&e

Sl/talbe W))U St dazua% beuw:ﬁe 03 chp.«zcre

n g valveg Wyt I[oYObquIJ‘/(;j o} exceedonce.,

A~ analysi’s using UHS

Imbllmbcms —>

/[ L
P(w!l“{’%) J /\,; awatysis uring et

(

0.5 |
SA (T, =[-0 Sec, E=o.os’,)

S0 for o gien <a lewol the P(Colapse) for CMS<UHS

cms P@S —> Reali'sht than UHS , (ess conservatve | phidi%es

deaggiegaﬁ"dh Info (MR, &) +o predict ;,pedmf

CW(lbe . /7{ M 7‘, Slpech’0m Chu()J:?c SAa)be-

(MS Ceng —> less m"o{e/l,7 owalable o (ess ConservallVe, | stweture

ond Site SberA-é’,C s, Specttum _ Changes wth M

requiTiny | mulliple  Gm el 73
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Procedvre fer Computng Mg s

(@) Determine Ewgej CA ot w ’besz‘oA a? infel@gi'

) Detevmine #e associated  m, R ad €/
Iftawget CA(T*) i obtadned from PSHA
fhen M, R, € (T*) can be 1faRen fromjay

mean M, R, ‘f’—fT*) {»mm A&g}gr@gqfﬁmv

) C'Om,puiﬁ
r_mesd QLo (SA) fundin 9 MR, T
ft_ St Dev_ o) In(SA) fdson QT

using M models  also  cauled  attenvation
modelS - Ondine  tool§.

) Comlbufﬁ ¢ at oftey ’pexf'oc((' a(/f’ven %('T*)

mean _€(I7 ) Given %(T*) =|Comelation coefpcien
bjw £ ot Tr ad T*
X
$LTH)
Ang_predictive eqs for tomelabion Coefp can be vsed
One i 5}(“\}64'1 below ,

P (Tia, T ) = 1= 005 (5 = (0:359+0:1¢31

t lm.n<'a,.,'5‘q—
An_Tmin \ ﬂn-[wg(i %
0- 189 / Tmin /
Where
i i = 1 P Toatn 40189 S
Tmin £ «[89 4
= 0 & oot
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Imin , Tmax ave  Smallegt and /ar,?le ] the
Jwo /oexz°od$‘ 071 mterest .

(©) Compufe cMS

mean & An SA(T;) given Ln SA(T *)

= mean 9 fnSA (MR T,',)-rJDJJ',.T"‘)f(T"?(

07’)54 (17 )

0= Stondeard deviodtion

p - Corvelation  Coefercient

The _exponentitd Q LHS 9 equabion = CMS

Co . LM VQ%U)U‘QS / " E XTSIy ’7M rodels

C—P3sHA yesvbts

Choice 0f i for _conditioning :

The Comi:ﬁowng cxewl-gs SA  vValvel ot offer

Jd
Ibenods ot oure aﬂwao% fess “extreme ” Han

SA(T*) .

[ e ctwehral veyonse _pavameter _of inferest

s olviven ,bnmazrffaq, bq eza%a.bm at am/oo(
Ofher than .T* , a10umd_motyors_gelected

[
o wmatch o CMS  rondibioned ot T* may.

’brooluce ,'na’blpr’olp'lfaf&g fow Y%}Pom%,

Tvadi%bmu‘,j, forfint mode domivant stvuctvres —> T

bot  FA and UppeY stovy Shear ,ﬂorczg may be  pove
Sens’hve 4o L,.‘%er— mode eza;(-nhm

Muth'ple  periods  also-

Seismic Hazard Assessment

191



rau UTPlE

Us‘fné} CmS 5 scimiflay to vsing  indinidvel
load cages  (wind , Snow , dead] etc in  Studvrel

Gmagg,‘g. Using  UHS Fs Similay  to  Simu laneously
01')9’}9]3;3;400, bquawmd load.(’ pale Snow ﬂezw(& pexdq 3
dive ands ete-
|hPle

Vsing "ems s anaIO}}GUSi'O (,on.si’de)l‘"ﬁ each peak

¢
Poad mdl\//olvﬂu% ww/e@ ”tb[olmnﬁ Ye/abvelj

CnalleY  volves %}’ ooy doad ﬁpeg

The peak  vesponses of  an Elashc SDOF

with  Peviod T* _— Jor US- matched and

CMS - matched gvound mobons. 7 $A(CTY)
2 J

a¥e  camé o Non Uhnear SDOF  may be

Sensitive  to  excitab’on ot a wide vonge of

,bem'odS ad, wilk  be Sensthiue 1o target RS,

UnliRe  yegu8  obtained vsing o UHS, grovnd,

motions gelected  and smled to match Me

cmg pvogp(u“cc Strvctvral vedponges

Comparable  to  pnscaled Qvowwl moﬁ"cm& Hat

/
nm‘umlg; have  fhe fu{,}?et CACT*)

CUMMARY

Cm ¢ ons wers  the Ql()éﬂ’ldnq what 5 He,

expected RS R Rl il +mef SA(T*)2

()S’ma knewledge ol h 0P K ani € valee

| T, o of that SA(TX)-
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2.26. Why PSHA and DSHA both should be performed?

Why
5 PSHA and DSHA both Shwld be performed. 222

' A GMS and DSHA
M05+ bdldmg it I?’{S:V':'d(’fmo‘zgaﬁs 20 bo;'he)ed fo Pe!’ﬁvm
[n (?enemf PSHA Governs in m\a)fbr}/a. of c.a,sc,g k Fqﬁwhg
in  vegions of low to moderate .s'ezsmlag‘.
DSHA will be vsed a8 an Uppex bomd foz the.
seismic hagan(. Most:  often used in the aye_qg ’f
hi g Su’swddtdlt. ov if designing a oritiad
Structvie -
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€ (7 /f P i TR = |os
¥

In PSHA there s @ ,m;;bwg Hat- moltiple EQS

Stavt  contributing i Hhe same time Gimvtwnensy)
‘ool a(“;am Scenaid.

—>Tis s not P{aeh

So in such lmzﬁ- ga'swu'cbgf. aveaS — leks evalvale

md‘“g& Scenaio ot each fw{t indx‘w‘dﬂalé: oud,
the M@

Com pare "ith  psHA weSulis.

If psHA GM > mAX (Indivi

A means wat PSHA is addl'lrg the Fossibwg-
mulliple €és Simultaneowlow.. So taen design

o DSHA.

If Te = &4 1800 7S
diklibod) hagard - DSHA will ke

7;,, 100 Yv§

dvad  covress), then

Hiew PSHA  wl ga‘ve veal
+o0 consewahive  becaUs€

it will just  consider te Mpmax Scenayio divectly .
/ e O =
w(na, is PSHA sl usedj)
A0 Pudid'f”“ R umsuc,cas{uk 7{58241(j;u S ol
vd g — not aﬂ’YC@
e o g seismiC w“fti}eg within wodel
knswnsS —7 Statistical (_)nceh‘“"‘ e b
Ll i nun nlznowY\S —7 Umul'wwhu e 10 U”NM‘M
Dnkno¥ Un od
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2.27. Site-specific PSHA Report
o Regional and histovical
Site-speafic PSHA Report 7 @maxg
o | Sicmic Sance model and
logic. tree (oF vef)

Seismic.  hagavd. Corves
s for Tas of intevest

| Deaggrregakion plots for Tes
of ~ interest
b IMUPYJCLHM °.f veSulhs
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2.28. Ground Motion Selection Guidelines

ASCE T]-lo  site dass:'ﬁ‘cdv'm:"

v = Ave 7056 cheay uave velo 0'{3-
30 b
’ in pwst 3om of Soifl

n

. 5w
i=1 =1 Ng
3om
_ S Thick ness § 2y (ae¥ bpw o—looft ()
B v veloutsin
e s
io‘f = (oo ft (30 ™)
- cite class

\7; > 5000 ftfs A. Havd RocR
5500 — 5000 [ B. RocR

g » V S

% Soif
(oo — 1200 FS D. Ctipp S0 .
L oo fs E . Sopt cloy soill
ASCE -0 Design SFe(ﬂ’q —
R 82{ ng ) Si ad TL_ values
from map
fmf SPea'ffc glie |
C. SPea‘mQ gesp onse accelexahion
’ qumei'e?f at  Short Few'odﬁ
L 09
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" 3@(’ Fa "
bz = FaSs §p5=,5-§Ms
Spq = 2=Smt
S M = FyS1 1 75"l
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wheye

Sps= PU,‘in .Spedml redponse accelevation
bm’amd&v’ at Jéaﬂ' peymAf

o p . :
¥ [ q-356c.
L= 02 Sor  fz= Sa  Ti= Loy pened
Sos $2s 7;a:;/§/" hm pevied.-

(rom maps)

= ASCE Yl-0b Site  classeS - Come oc  ASCE 7-10

B ASCE 4/-0é General Ra;bonse Spectrum
1

e

7\ ke Te= SkifSye
e aiba N~ E2 B8] Taon
I(”s,z)T %n ol B,z Y
S0 el e 5t (mp)]
Fod] -, T B> eff. viscous Darpig
We_vequire i S",],B —  Sx¢ = fa$s

SXI = FV SI

—> ASCE Yl-06 Clavge [-6-2-2
“ Time _ histories  Shall have magnitude

;CaUU“ olistanced , and  Source med\m:sms

Hat ave consistent with those  fhat
Control the  design eartbguake  around.
motion ” . : 4

SkSS specha, 8 sealed GMs 4 I3 Tineg
e 5y, ﬂlmbwL Speo%wm for _the datﬂn EG
for ’benod.s bjw 02T — 5T .
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Degign GMs flom Building Codes

.ui N . YY
fa‘;gn@::f;u; A NEHRP ——Iﬁ/KCE 125 180

ASCE 1-9°5 UHS Appuash MCE — 27. PE,SoYY

8¢ 2009 UNIFORM HAZARD )BEs,gZ_-.MCE
A/apwad«.
ASCE 7-/0 Risk '/‘ZlYa»CtUL App-mao‘) No PE

2
IBC 20l2 or Perfofﬂmce‘é“d appmaCh byt PLcolapst

lm‘bli ]
MCEgq —> 1. P [collepse] f L
witun Soaea‘(

General  Code Frocea(we :
diffaent from MCE level

Stepa = Ss oud Sy —>7aps ( PSHA waps in ASCET-1°
(for bed vock) onwardS —> ynodi fied
| for visk—targered P(olf))
Step 2 Sike  Classificabon

You need Ve3° oy blow comfls °f SPT (N), or
ned Shea¥ =
undyain huﬁ”' Su ok

Step 3: Determine E_ and F,
P (site wmdiorya' y D;JF

factors o (_QQT: v § Soi Tl

a ——

(%)‘YOCk ? Rock T;“k

Rebly T,
(Si,)roOk

Step s Sus=Fass
SMFFVSI

SteP 52 Sps= %3"5 [%‘. Comes. from Engr. of californua - ]

S31 22 Sy They dedide o design o ’7’3‘{ MCE
9
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Step 6 - B, T, ks F(S5 «d S)
step Tz Constwuck Spectrom  “5%§ code equation,

. ASiGn  (Occopanct Categord. o Risk Category
gt to 3701/1 S%I:uaf?fe (io,d;{-n, I, )
Tdentify the Seismic Design Ctegory
used 1o da@w,?ddeQfsmempdgﬁn

(A,B,C,@)

Step 4 ¢

Seismic Hazard Assessment

200



2.29. Time History Development

Take past
GM  Parabreters ~_ e MP‘: -
GMPEs _— _ ) i wea,;:en’;
PSHA | DSHA — Time  histogy development: mp S i
' / Physics - based. THS
.'Dea%xeaah(m J__MM % THe o
seisndlc waves ‘{:GM ScAling” “ltime Sep
it o RS ‘
Mau('d«mg g gt Sred‘rd wattung

Time Historg Scaling.s (stnerally in the Yarge 02T to1STh

Advautages Disadvants.§e
“Real EGS o Reguires lots 9 THs
o Retouns nafwaf vayiances ° G)Ym{‘e‘x variante
¢ Allows o focwS yespmse ¢ if ':Z“ performs
on the fen't)d(s) of ""“4“{/” #-——?wt'em
interdst will o point 76»*;{(305?
o Re(ah'vel& twsg. - -
design  with.
217 THs )
varionce

SFCCfYal Mai‘dﬂiv\g,.', Lifhanand.  and Tsena, (qu'],[qg@
Abrahamson (1243) —> Rp Match

add or Svbtract
wavelets to TH Hanckock et af. (Rvé)— RSPMalth
Reduce wuiabi/ﬂ(y in .
vesponse — Flaws in Disadvankage > can vesult
omreadishc EQ
stwcture — cleavrly e
understood from vespnse (vHS)
Some GM mfeds
may be [68€ e

Y eyl
}_‘4,4,—»—— Matthed

201
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Fadctors considered ~ While Seleoh‘rg THs ¢

v M (Tl Mg)

+10 Km
:; sa,ubf(M:Chamsv)n (more importantg fov Ym‘/#‘?’ust

fwlks 5 Sobduction 3mes)
L, SA(T) (t20 30% of Tagelt wlig

v Sal CasS .
v Divechivity Effeds (Yes|Ne) (potse-like
Evaluating the ResultS:
J and U fos both matched and ynmatthed,
ot the peaks shald ot be much

yeco w@

2y pt O, G
ond  chek th
e direchnty. ) ave

b) Al desived aalw,dfs g GMs (eg dir

chul  theXe:
c) AveaS In‘fzhsh"l pot — for both mai’fhei end,
onmatthed (energ4 yun-vp Shawidn't be

Signif contly alée)/u().
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2.30. The PSHA of Pakistan

DSHA —> Seismic hagard for ang sitt A is a
PGA of 0333 vesulking from on
eavthquake of My6.-0 on a faw tt

B ot a distance of 20 Km-
PE (all Ms, RS , Souvces)

S te A is
5 Seismic. hazard, for ang site
‘¥\ o Pq/!é;; 0-27 with a [0/PE in

H 60-1~r cxpos'ure
PGA Pcﬁod. .

PSHA —>

Seismic  hajard. Asesmert o Pakistan :-

Q) [a74 —> GSP—r Seismic hagard 3onakion map
T Zones (40-0!3. to 0-3l3- PG“)
b) Ghalb (1485) —» Contorr maps o PaA wd FaV
for RP of loo yrs amd 200 1S
(0-04g to 0-29)
¢) 1986 — Pakiston Building Code (bued on [982 UBC)
0405 — 12479 vecorded, dakn) —> Foor 3omes 0,1,2,3

4) VBC A1 —7 Isb, Khi, Laheve , Peshamay

&) 1449 — Geophysical Center of  Pakistan Meteorological,
Dept (PMD) —7 Seismic  zoning map —“ 3Mes

( Mw7 6 available data + available vecord o

intensities Of past events Cﬂlnmed et ol 2.006)

£) Qa2 - (939 — QHAP (Zhouy. et al.y 1944)

o PSHA uvsin Covnell - Mc Guire vach
. FRISKSCM} PP
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e 20 Sour@s , vniform Ku:(ml'a'fa-, & -R
o No austd fulk modeling-, no subduction
3one (modeled al avea sovre).
190D — 1447 wecovdS ,My, > 5-0
+ historvical .
No classifreafion of depth
One GMPE —» Huo et al.,(1442)
PGA with (o7. PE in 50 jeas.

9) 2001 —> PSHA by PMD and. NORSAR

o Cornell — McQuive approach us:'rza. CRISIS

* (9 Sovrce Zomes, uniform seismi city. ; =R

o No cawstal fault modeﬁna. , Subduchon 3Zme

modeled, a8 qvea Sovree .

o 1305 -2061 datn , Mw?4-8
Depth  Classifiaahion an(a. for Hindvkush vegion
(0-%0km , 30~ 120 km, 120 ~ 300km)
e One GMPE —> Ambra.soa'-f et al .y 2005
Actailed PaA oud SA (at diff pevieds) ol
differant RPs (100,475, love yyrg) k)(i.zizi,)
o H'u}aYd wrve§ and, UHS for Some citief.

o Deaggregation —7 PaA (415 47 RP)

h) 200 ] — PSHA by Nespak
o Comnell- McQGuive. approach using EZ=FRISK
o I Source 3meS, Uniform Seismicty, GR
o 28 achve favls s chavaderishc foult™ Sovsceg
No slp yate ave used in estimating. €@,
vewneng yake.
o Subduckion 30ne modeled. a$ avea Sovrce

o 1904 — 2006 data, Mw?45

o Depth  Clssifiation only for HindvResh and,
ponjab Seismic 3one

Seismic Hazard Assessment 204



e One GMPE used—> Boore et af., 1947
o PGA with (07.PE in S0 gears
Paxt of BCP (2007)

206 —> PSHA by Zaman and  Warntchai (2016)

o “Notional Seicmic Hagard Maps (M) USGS
Software  With Frankel (1aa5) spatially
Smoothed — gri ded  Ceismiciky- "

o Batgmmt Sovrce gome (spatially ecmav faed - gridded
Sa’sm'a'ig) y R

o 13 Achive crustad fovlts . Length, width, lip
and glip vates ave determined from past
avodlable Paieoseiswu'c a'nV@Sh'a»a/‘fanS a8 well o4
GPS studies. C;,R, troncated and Chagederishcs

€G models.

For  obduckion Zme , sloping- plane is considered, .
Sobdvcion EQs are assumed 10 be (veated by
yptuve along. an intkined. plane ot tue interface
between two tectoniC plates. Eleplh da“"ﬁ’abbnj

Differeat GMPES Shallow, interm.
5 Shallow crsta—> 3 NQA GMPES detp

ermediate  and
cl::ep in-slab W
Subduction 3ome —> 3 GMPEs
Logic tree  approach
o PGA,SA (0-2,1,25) for UTS and, 241S jfears
o DHS and Hajard curveS for mifor cities

o Deaggregation L Mab=t, deagtregation.

Gesgraphic u
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Q Yovnd 124% from Pﬂ Ya md‘wf

PaV, PGD efc.) for
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